登录 查看组织和合同定价。
选择尺寸
关于此项目
NACRES:
NA.85
UNSPSC Code:
12352200
Promoter:
Promoter name: TEF1
Promoter activity: constitutive
Promoter type: yeast
Promoter activity: constitutive
Promoter type: yeast
Origin of replication:
2Micron, pUC (500 copies)
Bacteria selection:
kanamycin
Reporter gene:
none
Peptide cleavage:
no cleavage
form
buffered aqueous solution
mol wt
size 6720 bp
bacteria selection
kanamycin
origin of replication
2Micron, pUC (500 copies)
peptide cleavage
no cleavage
promoter
Promoter name: TEF1
Promoter activity: constitutive
Promoter type: yeast
reporter gene
none
shipped in
ambient
storage temp.
−20°C
yeast selection
uracil
General description
PSF-TEFI-URA3 – uracil yeast selection plasmid is a yeast expression plasmid vector containing the yeast EF1a strong constitutive promoter and the URA3 selection marker to allow growth in the absence of uracil. PSF-TEFI-URA3 – uracil yeast selection expression plasmid is designed for the production proteins in Saccharomyces cerevisiae with selection on media that is deficient in the metabolite uracil. The vector contains the constitutive TEF1 yeast promoter to drive the expression of a gene of interest. It also contains a gene that is an essential component of the uracil synthesis pathway. This allows the plasmid to be maintained in yeast cells that have this gene deleted on media that does not contain uracil. This is the most commonly used selection method for Saccharomyces cerevisiae. We also provide other metabolite selection yeast plasmids that use histidine leucine or tryptophan as the selection method. We also provide plasmids using small molecule selection such as puromycin and blasticidin.
Promoter Expression Level: This plasmid contains the yeast translation elongation factor 1 promoter. It is the strongest promoter that we provide for expression in Saccharomyces cerevisiae.
Promoter Expression Level: This plasmid contains the yeast translation elongation factor 1 promoter. It is the strongest promoter that we provide for expression in Saccharomyces cerevisiae.
Application
Cloning in a gene: PSF-TEFI-URA3 – uracil yeast selection plasmid has been designed to be compatible with a range of cloning techniques. The multiple cloning site contains a range of standard commonly used restriction sites for cloning. Using these sites genes can be inserted using standard cloning methods with DNA ligase. Other methods such as ligase independent cloning (LIC) Gibson Assembly InFusionHD or Seamless GeneArt can also be used and because all of our plasmids are based on the same backbone the same method can be used for cloning into all of our catalogue vectors.
Multiple cloning site notes: There are a few important sites within the MCS. These include the NcoI site the XbaI site and the BsgI and BseRI sites. The NcoI site contains a start codon that is immediately downstream of both a Kozak and Shine-Dalgarno ribosomal binding site. These allow for optimal positioning of genes when the start codon is placed in this location. If this is not required and you wish to use a downstream site for gene cloning you can remove the NcoI site by cleaving the plasmid with KpnI.
The XbaI site contains a stop codon. This stop codon is positioned in a specific position in relation to the BsgI and BseRI sites that are immediately downstream. When either BseRI or BsgI cleave the plasmid they produce a TA overhang from the stop codon in the XbaI site that is compatible with all of our peptide tag plasmids cut with the same sites. BseRI and BsgI sites are non-palindromic and cleave a defined number of bases away from their binding site.
Whenever we clone a gene into our multiple cloning site we always position the start and stop codon in the same positions in the MCS. If the start and ends of the genes are not compatible with NcoI and XbaI we extend the sequence to the nearest external sites but keep the start and stop codons locations consistent.
Multiple cloning site notes: There are a few important sites within the MCS. These include the NcoI site the XbaI site and the BsgI and BseRI sites. The NcoI site contains a start codon that is immediately downstream of both a Kozak and Shine-Dalgarno ribosomal binding site. These allow for optimal positioning of genes when the start codon is placed in this location. If this is not required and you wish to use a downstream site for gene cloning you can remove the NcoI site by cleaving the plasmid with KpnI.
The XbaI site contains a stop codon. This stop codon is positioned in a specific position in relation to the BsgI and BseRI sites that are immediately downstream. When either BseRI or BsgI cleave the plasmid they produce a TA overhang from the stop codon in the XbaI site that is compatible with all of our peptide tag plasmids cut with the same sites. BseRI and BsgI sites are non-palindromic and cleave a defined number of bases away from their binding site.
Whenever we clone a gene into our multiple cloning site we always position the start and stop codon in the same positions in the MCS. If the start and ends of the genes are not compatible with NcoI and XbaI we extend the sequence to the nearest external sites but keep the start and stop codons locations consistent.
Analysis Note
To view the Certificate of Analysis for this product, please visit www.oxgene.com
Other Notes
To view sequence information for this product, please visit the product page
存储类别
12 - Non Combustible Liquids
flash_point_f
Not applicable
flash_point_c
Not applicable
法规信息
新产品
此项目有
Diana Romero et al.
Carcinogenesis, 37(1), 18-29 (2015-10-28)
Dickkopf-3 (Dkk-3) is a secreted protein whose expression is downregulated in many types of cancer. Endogenous Dkk-3 is required for formation of acini in 3D cultures of prostate epithelial cells, where it inhibits transforming growth factor (TGF)-β/Smad signaling. Here, we
Geoffrey M Lynn et al.
Nature biotechnology, 33(11), 1201-1210 (2015-10-27)
The efficacy of vaccine adjuvants such as Toll-like receptor agonists (TLRa) can be improved through formulation and delivery approaches. Here, we attached small molecule TLR-7/8a to polymer scaffolds (polymer-TLR-7/8a) and evaluated how different physicochemical properties of the TLR-7/8a and polymer
Jin-Gyoung Jung et al.
PLoS genetics, 10(10), e1004751-e1004751 (2014-10-31)
The Notch3 signaling pathway is thought to play a critical role in cancer development, as evidenced by the Notch3 amplification and rearrangement observed in human cancers. However, the molecular mechanism by which Notch3 signaling contributes to tumorigenesis is largely unknown.
Alexander C Cerny et al.
PLoS genetics, 11(10), e1005578-e1005578 (2015-10-29)
Recycling of signaling proteins is a common phenomenon in diverse signaling pathways. In photoreceptors of Drosophila, light absorption by rhodopsin triggers a phospholipase Cβ-mediated opening of the ion channels transient receptor potential (TRP) and TRP-like (TRPL) and generates the visual
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持