跳转至内容
Merck
CN

SML0083

GSK 1059615 sodium salt hydrate

别名:

(5Z)-5-[[4-(4-pyridinyl)-6-quinolinyl]methylene]-2,4-thiazolidinedione sodium salt hydrate

登录 查看组织和合同定价。

选择尺寸


关于此项目

经验公式(希尔记法):
C18H10N3O2S·Na · xH2O
化学文摘社编号:
分子量:
355.35 (anhydrous basis)
UNSPSC Code:
12352203
PubChem Substance ID:
NACRES:
NA.44
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助

SMILES string

O.[Na+].O=C1[N-]C(=O)C(\S1)=C\c2ccc3nccc(-c4ccncc4)c3c2

InChI

1S/C18H11N3O2S.Na.H2O/c22-17-16(24-18(23)21-17)10-11-1-2-15-14(9-11)13(5-8-20-15)12-3-6-19-7-4-12;;/h1-10H,(H,21,22,23);;1H2/q;+1;/p-1/b16-10-;;

InChI key

KKSRFFGUIONCPS-FLPKAINGSA-M

form

powder

color

yellow

solubility

H2O: ≥8 mg/mL

originator

GlaxoSmithKline

storage temp.

2-8°C

Quality Level

Biochem/physiol Actions

GSK 1059615 is a PI3 Kinase inhbitor
GSK 1059615 is a phosphatidylinositol-3-kinases (PI3K) inhibitor. GSK 1059615 inhibits proliferation of breast cancer BT474 cells via four different mechanisms that include retinoblastoma 1 (RB1)-mediated cell cycle arrest, elevated forkhead box protein O1 (FOXO) signaling, deduced MYC and transferrin receptor (TFRC) signaling and decreased cellular metabolism. Additionally, GSK 1059615 can suppress cell proliferation by decreasing mitogen-activated protein kinase (MAPK) signaling and imparts sensitivity to phosphoinositide 3-kinase (PI3K) inhibitor in cells resistant to the protein kinase B or AKT inhibitor. GSK 1059615 functions as a druggable target to reduce radiation-induced apoptosis in NCCIT cells. GSK 1059615 has entered clinical trial in patients with solid tumors or lymphoma and refractory malignancies.
GSK 1059615 is a potent inhibitor of PI3 Kinase. (IC50 = 2 nM)

Features and Benefits

This compound is a featured product for Kinase Phosphatase Biology research. Click here to discover more featured Kinase Phosphatase Biology products. Learn more about bioactive small molecules for other areas of research at sigma.com/discover-bsm.
This compound was developed by GlaxoSmithKline. To browse the list of other pharma-developed compounds and Approved Drugs/Drug Candidates, click here.

Disclaimer

Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.

存储类别

11 - Combustible Solids

wgk

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


历史批次信息供参考:

分析证书(COA)

Lot/Batch Number

没有发现合适的版本?

如果您需要特殊版本,可通过批号或批次号查找具体证书。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Pixu Liu et al.
Nature reviews. Drug discovery, 8(8), 627-644 (2009-08-01)
The phosphoinositide 3-kinase (PI3K) pathway is a key signal transduction system that links oncogenes and multiple receptor classes to many essential cellular functions, and is perhaps the most commonly activated signalling pathway in human cancer. This pathway therefore presents both
Crystal D Zellefrow et al.
Radiation research, 178(3), 150-159 (2012-07-04)
Currently, there is a serious absence of pharmaceutically attractive small molecules that mitigate the lethal effects of an accidental or intentional public exposure to toxic doses of ionizing radiation. Moreover, cellular systems that emulate the radiobiologically relevant cell populations and
Causal Network? Modeling identifies common and unique mechanisms for sensitivity to the PI3K inhibitor GSK1059615 and the AKT inhibitor GSK690693
Macoritto M P
Molecular Cancer Therapeutics, 8(12 Suppl), 15-19 (2009)
Steven D Knight et al.
ACS medicinal chemistry letters, 1(1), 39-43 (2010-04-08)
Phosphoinositide 3-kinase α (PI3Kα) is a critical regulator of cell growth and transformation, and its signaling pathway is the most commonly mutated pathway in human cancers. The mammalian target of rapamycin (mTOR), a class IV PI3K protein kinase, is also

商品

Discover Bioactive Small Molecules for Kinase Phosphatase Biology

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系客户支持