登录 查看组织和合同定价。
选择尺寸
关于此项目
经验公式(希尔记法):
C27H28F2N6O·3HCl
化学文摘社编号:
分子量:
599.93
UNSPSC Code:
12352200
NACRES:
NA.77
MDL number:
Assay:
≥98% (HPLC)
Form:
powder
产品名称
NVP-BSK805 Trihydrochloride, ≥98% (HPLC)
SMILES string
Fc1c(c(cc(c1)c3c4nc(cnc4ccc3)c5c[n](nc5)C6CCNCC6)F)CN2CCOCC2
InChI key
IBPVXAOOVUAOKJ-UHFFFAOYSA-N
InChI
1S/C27H28F2N6O/c28-23-12-18(13-24(29)22(23)17-34-8-10-36-11-9-34)21-2-1-3-25-27(21)33-26(15-31-25)19-14-32-35(16-19)20-4-6-30-7-5-20/h1-3,12-16,20,30H,4-11,17H2
assay
≥98% (HPLC)
form
powder
color
faint yellow to dark orange
solubility
H2O: 2 mg/mL, clear
storage temp.
−20°C
Biochem/physiol Actions
NVP-BSK805 is a selective, ATP-competitive (Ki = 0.43 nM) Janus kinase 2 (JAK2) inhibitor (IC50 = 0.58 and 0.56 nM against full-length wild-type and V617F JAK2, respectively) with greatly reduced potency against TYK2, JAK3, JAK1 (IC50 = 10.76, 18.68, 31.63 nM against respective JAK homology domain 1) and >300-fold selectivity over a panel of 36 other kinases. BSK805 potently inhibits STAT5 phosphorylation (by >90% at 100 nM; MB-02 & SET-2 cells) and proliferation in JAK2V617F mutant cultures in vitro (GI50= 39-331 nM; 75% SET-2 growth inhibition at 150 nM) and in Ba/F3 JAK2V617F-bearing mice in vivo (150 mg/kg p.o.). BSK805 daily oral administration is also efficacious against rhEpo-induced splenomegaly and polycythemia in mice (50-100 mg/kg) and rats (25-50 mg/kg) with good pharmacokinetics and oral avilability.
Orally available, ATP-competitive Janus kinase 2 (JAK2) inhibitor with efficacy against JAK2V617F-driven leukemic disease in mice and rats in vivo.
存储类别
11 - Combustible Solids
wgk
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
法规信息
新产品
此项目有
Ji Hyun Cheon et al.
Biochemical and biophysical research communications, 490(4), 1176-1182 (2017-07-04)
P-glycoprotein (P-gp) is overexpressed in cancer cells in order to pump out chemotherapeutic drugs, and is one of the major mechanisms responsible for multidrug resistance (MDR). It is important to identify P-gp inhibitors with low toxicity to normal cells in
Alessia Bottos et al.
Nature communications, 7, 12258-12258 (2016-07-14)
The JAK/STAT pathway is an attractive target for breast cancer therapy due to its frequent activation, and clinical trials evaluating JAK inhibitors (JAKi) in advanced breast cancer are ongoing. Using patient biopsies and preclinical models of breast cancer, we demonstrate
Andriy Marusyk et al.
Cancer research, 76(22), 6495-6506 (2016-11-05)
Using a three-dimensional coculture model, we identified significant subtype-specific changes in gene expression, metabolic, and therapeutic sensitivity profiles of breast cancer cells in contact with cancer-associated fibroblasts (CAF). CAF-induced gene expression signatures predicted clinical outcome and immune-related differences in the
Carole Pissot-Soldermann et al.
Bioorganic & medicinal chemistry letters, 20(8), 2609-2613 (2010-03-17)
We have designed and synthesized a novel series of 2,8-diaryl-quinoxalines as Janus kinase 2 inhibitors. Many of the inhibitors show low nanomolar activity against JAK2 and potently suppress proliferation of SET-2 cells in vitro. In addition, compounds from this series
Justin M Balko et al.
Science translational medicine, 8(334), 334ra53-334ra53 (2016-04-15)
Amplifications at 9p24 have been identified in breast cancer and other malignancies, but the genes within this locus causally associated with oncogenicity or tumor progression remain unclear. Targeted next-generation sequencing of postchemotherapy triple-negative breast cancers (TNBCs) identified a group of
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持