登录 查看组织和合同定价。
选择尺寸
关于此项目
经验公式(希尔记法):
C21H19ClN2O2
化学文摘社编号:
分子量:
366.84
UNSPSC Code:
12352200
NACRES:
NA.77
MDL number:
产品名称
D159687, ≥98% (HPLC)
SMILES string
Clc1cc(ccc1)c2c(ccc(c2)Cc3ccc(cc3)NC(=O)N)OC
InChI
1S/C21H19ClN2O2/c1-26-20-10-7-15(12-19(20)16-3-2-4-17(22)13-16)11-14-5-8-18(9-6-14)24-21(23)25/h2-10,12-13H,11H2,1H3,(H3,23,24,25)
InChI key
RJJLUTWHJUDZFP-UHFFFAOYSA-N
assay
≥98% (HPLC)
form
powder
color
white to beige
solubility
DMSO: 2 mg/mL, clear (Warmed)
storage temp.
2-8°C
Quality Level
Biochem/physiol Actions
Brain-penetrant, orally available, potent and selective PDE4D negative allosteric modulator (NAM), more effective & much less emetic than Rolipram in vivo.
D159687 is a brain-penetrant, orally available, highly potent and selective negative allosteric modulator (NAM) against phosphodiesterase 4 (PDE4) subtype PDE4D (hPDE4D7 IC50 = 27 nM; PDE4A1/B1/C1 IC50 = 2.50/1.47/6.80 μM; IC50 ≥29 μM against PDE1/2/3/5/7/8/9/10/11 subtypes). Comparing to Rolipram, D159678 offers similar in vivo efficacy on long-term memory formation by novel object recognition test (MED = 3 μg/kg mouse iv., 1 μg/kg rat p.o.), while being more effective in the scopolamine-impaired Y-maze tests (D159678/Rolipram MED = 0.1/1 μg/kg mouse iv. or 30/100 μg/kg mouse p.o.) and much less emetic in shrews/dog/monkeys (by 100-/3000-/500-fold).
存储类别
11 - Combustible Solids
wgk
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
法规信息
新产品
此项目有
Alex B Burgin et al.
Nature biotechnology, 28(1), 63-70 (2009-12-29)
Phosphodiesterase 4 (PDE4), the primary cAMP-hydrolyzing enzyme in cells, is a promising drug target for a wide range of conditions. Here we present seven co-crystal structures of PDE4 and bound inhibitors that show the regulatory domain closed across the active
Jane S Sutcliffe et al.
PloS one, 9(7), e102449-e102449 (2014-07-23)
Cyclic adenosine monophosphate (cAMP) signalling plays an important role in synaptic plasticity and information processing in the hippocampal and basal ganglia systems. The augmentation of cAMP signalling through the selective inhibition of phosphodiesterases represents a viable strategy to treat disorders
David J Titus et al.
Neurobiology of learning and memory, 148, 38-49 (2018-01-03)
Traumatic brain injury (TBI) significantly decreases cyclic AMP (cAMP) signaling which produces long-term synaptic plasticity deficits and chronic learning and memory impairments. Phosphodiesterase 4 (PDE4) is a major family of cAMP hydrolyzing enzymes in the brain and of the four
Chong Zhang et al.
Scientific reports, 7, 40115-40115 (2017-01-06)
Inhibition of cyclic AMP (cAMP)-specific phosphodiesterase 4 (PDE4) has been proposed as a potential treatment for a series of neuropsychological conditions such as depression, anxiety and memory loss. However, the specific involvement of each of the PDE4 subtypes (PDE4A, 4B
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持