跳转至内容
Merck
CN
  • Pten Regulates Retinal Amacrine Cell Number by Modulating Akt, Tgfβ, and Erk Signaling.

Pten Regulates Retinal Amacrine Cell Number by Modulating Akt, Tgfβ, and Erk Signaling.

The Journal of neuroscience : the official journal of the Society for Neuroscience (2016-09-09)
Nobuhiko Tachibana, Robert Cantrup, Rajiv Dixit, Yacine Touahri, Gaurav Kaushik, Dawn Zinyk, Narsis Daftarian, Jeff Biernaskie, Sarah McFarlane, Carol Schuurmans
摘要

All tissues are genetically programmed to acquire an optimal size that is defined by total cell number and individual cellular dimensions. The retina contains stereotyped proportions of one glial and six neuronal cell types that are generated in overlapping waves. How multipotent retinal progenitors know when to switch from making one cell type to the next so that appropriate numbers of each cell type are generated is poorly understood. Pten is a phosphatase that controls progenitor cell proliferation and differentiation in several lineages. Here, using a conditional loss-of-function strategy, we found that Pten regulates retinal cell division and is required to produce the full complement of rod photoreceptors and amacrine cells in mouse. We focused on amacrine cell number control, identifying three downstream Pten effector pathways. First, phosphoinositide 3-kinase/Akt signaling is hyperactivated in Pten conditional knock-out (cKO) retinas, and misexpression of constitutively active Akt (Akt-CA) in retinal explants phenocopies the reduction in amacrine cell production observed in Pten cKOs. Second, Akt-CA activates Tgfβ signaling in retinal explants, which is a negative feedback pathway for amacrine cell production. Accordingly, Tgfβ signaling is elevated in Pten cKO retinas, and epistatic analyses placed Pten downstream of TgfβRII in amacrine cell number control. Finally, Pten regulates Raf/Mek/Erk signaling levels to promote the differentiation of all amacrine cell subtypes, which are each reduced in number in Pten cKOs. Pten is thus a positive regulator of amacrine cell production, acting via multiple downstream pathways, highlighting its diverse actions as a mediator of cell number control. Despite the importance of size for optimal organ function, how individual cell types are generated in correct proportions is poorly understood. There are several ways to control cell number, including readouts of organ function (e.g., secreted hormones reach functional levels when enough cells are made) or counting of cell divisions or cell number. The latter applies to the retina, where cell number is regulated by negative feedback signals, which arrest differentiation of particular cell types at threshold levels. Herein, we show that Pten is a critical regulator of amacrine cell number in the retina, acting via multiple downstream pathways. Our studies provide molecular insights into how PTEN loss in humans may lead to uncontrolled cell division in several pathological conditions.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
抗Sox9抗体, Chemicon®, from rabbit
Sigma-Aldrich
抗磷酸组蛋白H3(Ser10)抗体,有丝分裂标记, Upstate®, from rabbit
Sigma-Aldrich
抗锥体抑制蛋白抗体, Chemicon®, from rabbit
Sigma-Aldrich
抗-视紫红质抗体,CT,最后9个氨基酸,克隆Rho 1D4, clone Rho 1D4, Chemicon®, from mouse
Sigma-Aldrich
抗-Brn-3a抗体, Chemicon®, from rabbit
Sigma-Aldrich
Anti-BARHL2 antibody produced in rabbit, affinity isolated antibody