Merck
CN
  • Cell-autonomous and non-cell autonomous effects of neuronal BIN1 loss in vivo.

Cell-autonomous and non-cell autonomous effects of neuronal BIN1 loss in vivo.

PloS one (2019-08-14)
Kathleen M McAvoy, Hameetha Rajamohamed Sait, Galina Marsh, Michael Peterson, Taylor L Reynolds, Jake Gagnon, Sarah Geisler, Prescott Leach, Chris Roberts, Ellen Cahir-McFarland, Richard M Ransohoff, Andrea Crotti
摘要

BIN1 is the most important risk locus for Late Onset Alzheimer's Disease (LOAD), after ApoE. BIN1 AD-associated SNPs correlate with Tau deposition as well as with brain atrophy. Furthermore, the level of neuronal-specific BIN1 isoform 1 protein is decreased in sporadic AD cases in parallel with neuronal loss, despite an overall increase in BIN1 total mRNA. To address the relationship between reduction of BIN1 and neuronal cell loss in the context of Tau pathology, we knocked-down endogenous murine Bin1 via stereotaxic injection of AAV-Bin1 shRNA in the hippocampus of mice expressing Tau P301S (PS19). We observed a statistically significant reduction in the number of neurons in the hippocampus of mice injected with AAV-Bin1 shRNA in comparison with mice injected with AAV control. To investigate whether neuronal loss is due to deletion of Bin1 selectively in neurons in presence Tau P301S, we bred Bin1flox/flox with Thy1-Cre and subsequently with PS19 mice. Mice lacking neuronal Bin1 and expressing Tau P301S showed increased mortality, without increased neuropathology, when compared to neuronal Bin1 and Tau P301S-expressing mice. The loss of Bin1 isoform 1 resulted in reduced excitability in primary neurons in vitro, reduced neuronal c-fos expression as well as in altered microglia transcriptome in vivo. Taken together, our data suggest that the contribution of genetic variation in BIN1 locus to AD risk could result from a cell-autonomous reduction of neuronal excitability due to Bin1 decrease, exacerbated by the presence of aggregated Tau, coupled with a non-cell autonomous microglia activation.

材料
货号
品牌
产品描述

Millipore
蛋白酶细胞分离液, A cell detachment solution of proteolytic & collagenolytic enzymes. The reagent is useful for creating single cell suspensions from clumped cell cultures for accurate cell counting, detachment of cells from primary tissue.
Sigma-Aldrich
抗GAD67抗体,克隆1G10.2, clone 1G10.2, Chemicon®, from mouse
Sigma-Aldrich
抗-NeuN抗体, serum, from guinea pig
Sigma-Aldrich
双(2-氧代-3-噁唑烷基)次磷酰氯, ≥97.0% (AT)