跳转至内容
Merck
CN
  • Dietary Amino Acids Impact LRRK2-Induced Neurodegeneration in Parkinson's Disease Models.

Dietary Amino Acids Impact LRRK2-Induced Neurodegeneration in Parkinson's Disease Models.

The Journal of neuroscience : the official journal of the Society for Neuroscience (2020-07-02)
Vinita G Chittoor-Vinod, Steffany Villalobos-Cantor, Hanna Roshak, Kelsey Shea, Leire Abalde-Atristain, Ian Martin
摘要

The G2019S mutation in leucine-rich repeat kinase 2 (LRRK2) is a common cause of Parkinson's disease (PD) and results in age-related dopamine neuron loss and locomotor dysfunction in Drosophila melanogaster through an aberrant increase in bulk neuronal protein synthesis. Under nonpathologic conditions, protein synthesis is tightly controlled by metabolic regulation. Whether nutritional and metabolic influences on protein synthesis can modulate the pathogenic effect of LRRK2 on protein synthesis and thereby impact neuronal loss is a key unresolved question. Here, we show that LRRK2 G2019S-induced neurodegeneration is critically dependent on dietary amino acid content in Drosophila studies with both sexes. Low dietary amino acid concentration prevents aberrant protein synthesis and blocks LRRK2 G2019S-mediated neurodegeneration in Drosophila and rat primary neurons. Unexpectedly, a moderately high-amino acid diet also blocks dopamine neuron loss and motor deficits in Drosophila through a separate mechanism involving stress-responsive activation of 5'-AMP-activated protein kinase (AMPK) and neuroprotective induction of autophagy, implicating the importance of protein homeostasis to neuronal viability. At the highest amino acid diet of the range tested, PD-related neurodegeneration occurs in an age-related manner, but is also observed in control strains, suggesting that it is independent of mutant LRRK2 expression. We propose that dietary influences on protein synthesis and autophagy are critical determinants of LRRK2 neurodegeneration, opening up possibilities for future therapeutic intervention.SIGNIFICANCE STATEMENT Parkinson's disease (PD) prevalence is projected to rise as populations continue to age, yet there are no current therapeutic approaches that delay or stop disease progression. A broad role for leucine-rich repeat kinase 2 (LRRK2) mutations in familial and idiopathic PD has emerged. Here, we show that dietary amino acids are important determinants of neurodegeneration in a Drosophila model of LRRK2 PD. Restricting all amino acids effectively suppresses dopaminergic neuron loss and locomotor deficits and is associated with reduced protein synthesis, while moderately high amino acids similarly attenuate these PD-related phenotypes through a stress-responsive induction of 5'-AMP-activated protein kinase and autophagy. These studies suggest that diet plays an important role in the development of PD-related phenotypes linked to LRRK2.

材料
Product Number
品牌
产品描述

Sigma-Aldrich
聚-D-赖氨酸 氢溴酸盐, mol wt 70,000-150,000, lyophilized powder, γ-irradiated, BioReagent, suitable for cell culture
Sigma-Aldrich
磷酸酶抑制剂混合物3, DMSO solution
Sigma-Aldrich
驴血清
Roche
原位细胞死亡检测试剂盒,TMR红, sufficient for ≤50 tests
Sigma-Aldrich
抗嘌呤霉素抗体,克隆 12D10, clone 12D10, from mouse
Sigma-Aldrich
5-氟-2′-脱氧尿嘧啶核苷, thymidylate synthase inhibitor
Sigma-Aldrich
ADP/ATP 比率检测试剂盒, sufficient for 100 tests (bioluminescent)
Supelco
亮蓝, analytical standard
Sigma-Aldrich
食用亮蓝 二钠盐, coloring dye
Sigma-Aldrich
DL-半胱氨酸, technical grade
Sigma-Aldrich
嘌呤霉素,二盐酸盐, Puromycin, Dihydrochloride, CAS 58-58-2, is An aminonucleoside antibiotic that inhibits protein synthesis by blocking the translation step and causes premature release of nascent polypeptide chains.
Sigma-Aldrich
抗AMPK alpha 1/2抗体,克隆34.2, clone 34.2, from mouse