跳转至内容
Merck
CN
  • Extracellular CIRP and TREM-1 axis promotes ICAM-1-Rho-mediated NETosis in sepsis.

Extracellular CIRP and TREM-1 axis promotes ICAM-1-Rho-mediated NETosis in sepsis.

FASEB journal : official publication of the Federation of American Societies for Experimental Biology (2020-06-09)
Atsushi Murao, Adnan Arif, Max Brenner, Naomi-Liza Denning, Hui Jin, Satoshi Takizawa, Benjamin Nicastro, Ping Wang, Monowar Aziz
摘要

Extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern (DAMP). Intercellular adhesion molecule-1 (ICAM-1) expressing neutrophils produce excessive amounts of neutrophil extracellular traps (NETs). We reveal that eCIRP generates ICAM-1+ neutrophils through triggering receptor expressed on myeloid cells-1 (TREM-1) and the ICAM-1+ neutrophils involve Rho GTPase to promote NETosis. Treatment of BMDN with rmCIRP increased the frequency of ICAM-1+ BMDN, while rmCIRP-treated TREM-1-/- BMDN or pretreatment of BMDN with TREM-1 inhibitor LP17 significantly decreased the frequency of ICAM-1+ neutrophils. The frequencies of ICAM-1+ neutrophils in blood and lungs were markedly decreased in rmCIRP-injected mice or septic mice treated with LP17. Coculture of ICAM-1-/- neutrophils or wild-type (WT) neutrophils with WT macrophages in the presence of a peptidylarginine deiminase 4 (PAD4) inhibitor reduced TNF-α and IL-6 compared to WT neutrophils treated with rmCIRP. Treatment of ICAM-1-/- neutrophils with rmCIRP resulted in reduced quantities of NETs compared to WT rmCIRP-treated neutrophils. Treatment of BMDN with rmCIRP-induced Rho activation, while blockade of ICAM-1 significantly decreased Rho activation. Inhibition of Rho significantly decreased rmCIRP-induced NET formation in BMDN. TREM-1 plays a critical role in the eCIRP-mediated increase of ICAM-1 expression in neutrophils, leading to the increased NET formation via Rho activation to exaggerate inflammation.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
抗磷酸酪氨酸抗体,克隆4G10®, clone 4G10®, Upstate®, from mouse
Sigma-Aldrich
PAD抑制剂,Cl-amidine, Cl-amidine is a cell-permeable pan PAD inhibitor (IC50 = 0.8, 6.2, and 5.9 µM for PAD1, PAD3, and PAD4, respectively). Inactivates the calcium bound form of PAD4 in an irreversible manner.