- The enzyme mechanism of nitrite reductase studied at single-molecule level.
The enzyme mechanism of nitrite reductase studied at single-molecule level.
A generic method is described for the fluorescence "readout" of the activity of single redox enzyme molecules based on Förster resonance energy transfer from a fluorescent label to the enzyme cofactor. The method is applied to the study of copper-containing nitrite reductase from Alcaligenes faecalis S-6 immobilized on a glass surface. The parameters extracted from the single-molecule fluorescence time traces can be connected to and agree with the macroscopic ensemble averaged kinetic constants. The rates of the electron transfer from the type 1 to the type 2 center and back during turnover exhibit a distribution related to disorder in the catalytic site. The described approach opens the door to single-molecule mechanistic studies of a wide range of redox enzymes and the precise investigation of their internal workings.