跳转至内容
Merck
CN
  • DNA repair pathways are altered in neural cell models of frataxin deficiency.

DNA repair pathways are altered in neural cell models of frataxin deficiency.

Molecular and cellular neurosciences (2021-01-09)
Jara Moreno-Lorite, Sara Pérez-Luz, Yurika Katsu-Jiménez, Daniel Oberdoerfer, Javier Díaz-Nido
摘要

Friedreich's ataxia (FRDA) is a hereditary and predominantly neurodegenerative disease caused by a deficiency of the protein frataxin (FXN). As part of the overall efforts to understand the molecular basis of neurodegeneration in FRDA, a new human neural cell line with doxycycline-induced FXN knockdown was established. This cell line, hereafter referred to as iFKD-SY, is derived from the human neuroblastoma SH-SY5Y and retains the ability to differentiate into mature neuron-like cells. In both proliferating and differentiated iFKD-SY cells, the induction of FXN deficiency is accompanied by increases in oxidative stress and DNA damage, reduced aconitase enzyme activity, higher levels of p53 and p21, activation of caspase-3, and subsequent apoptosis. More interestingly, FXN-deficient iFKD-SY cells exhibit an important transcriptional deregulation in many of the genes implicated in DNA repair pathways. The levels of some crucial proteins involved in DNA repair appear notably diminished. Furthermore, similar changes are found in two additional neural cell models of FXN deficit: primary cultures of FXN-deficient mouse neurons and human olfactory mucosa stem cells obtained from biopsies of FRDA patients. These results suggest that the deficiency of FXN leads to a down-regulation of DNA repair pathways that synergizes with oxidative stress to provoke DNA damage, which may be involved in the pathogenesis of FRDA. Thus, a failure in DNA repair may be considered a shared common molecular mechanism contributing to neurodegeneration in a number of hereditary ataxias including FRDA.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
视黄酸, ≥98% (HPLC), powder
Sigma-Aldrich
钙黄绿素, Used for the fluorometric determination of calcium and EDTA titration of calcium in the presence of magnesium.