跳转至内容
Merck
CN
  • Aromatic difluoroboron β-diketonate complexes: effects of π-conjugation and media on optical properties.

Aromatic difluoroboron β-diketonate complexes: effects of π-conjugation and media on optical properties.

Inorganic chemistry (2013-03-21)
Songpan Xu, Ruffin E Evans, Tiandong Liu, Guoqing Zhang, J N Demas, Carl O Trindle, Cassandra L Fraser
摘要

Aromatic difluoroboron β-diketonate complexes (BF2bdks) are classic fluorescent molecules that have been explored as photochemical reagents, two-photon dyes, and oxygen sensors. To gain a better understanding of their emissive properties in both solution and polymer matrices, BF2bdks with varying aromatic groups were synthesized and their photophysical properties were investigated in both methylene chloride and poly(lactic acid) (PLA). Absorption spectra showed systematic variations that are well correlated with structural features, including the size of the aryl substituent and the presence of a para electron-donating methoxy substituent. Computational modeling of the absorption spectra with the TD-B3LYP/6-311+G(d)//B3LYP/6-31G(d) formulation of density functional theory and a polarizable continuum model of dichloromethane solvent shows that all systems show intense π-π* one-electron excitations, usually from one of the highest occupied molecular orbitals (HOMO - k, k = 0, 1, 2) to the lowest unoccupied molecular orbital (LUMO). Emission properties are sensitive to the dye structure and medium. Based on spectroscopic and lifetime studies, BF2bdks exhibit comparable fluorescence properties in both solutions and polymers when the diketonate group is functionalized with smaller aromatic ring systems such as benzene. For BF2bdks with larger arene ring systems, such as anthracene, emission from a strong intramolecular charge-transfer (ICT) state was also noted in both solution and in PLA. There are differences in relative intensities of peaks arising from π-π* and ICT excitations depending upon dye loading in PLA. Substituent effects were also observed. Electron-donating methoxyl groups on the aromatic rings lead to enhanced fluorescence quantum yields. For certain dyes, phosphorescence is detected at low temperature or under a nitrogen atmosphere in PLA matrices.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
二氯甲烷, suitable for HPLC, ≥99.8%, contains amylene as stabilizer
Sigma-Aldrich
二氯甲烷, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Sigma-Aldrich
二氯甲烷, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 50-150 ppm amylene as stabilizer
Sigma-Aldrich
二氯甲烷, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
二氯甲烷, puriss. p.a., ACS reagent, reag. ISO, ≥99.9% (GC)
Sigma-Aldrich
二氯甲烷, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
聚乳酸, Mw ~60,000
Sigma-Aldrich
二氯甲烷, puriss., meets analytical specification of Ph. Eur., NF, ≥99% (GC)
Supelco
二氯甲烷, analytical standard
Sigma-Aldrich
二氯甲烷, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
二氯甲烷, suitable for HPLC, ≥99.9%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
二氯甲烷, biotech. grade, 99.9%, contains 40-150 ppm amylene as stabilizer
Supelco
二氯甲烷, Selectophore, ≥99.5%