跳转至内容
Merck
CN
  • Treatment with basic fibroblast growth factor-incorporated gelatin hydrogel does not exacerbate mechanical allodynia after spinal cord contusion injury in rats.

Treatment with basic fibroblast growth factor-incorporated gelatin hydrogel does not exacerbate mechanical allodynia after spinal cord contusion injury in rats.

The journal of spinal cord medicine (2013-07-03)
Takeo Furuya, Masayuki Hashimoto, Masao Koda, Atsushi Murata, Akihiko Okawa, Mari Dezawa, Dai Matsuse, Yasuhiko Tabata, Kazuhisa Takahashi, Masashi Yamazaki
摘要

Besides stimulating angiogenesis or cell survival, basic fibroblast growth factor (bFGF) has the potential for protecting neurons in the injured spinal cord. To investigate the effects of a sustained-release system of bFGF from gelatin hydrogel (GH) in a rat spinal cord contusion model. Adult female Sprague-Dawley rats were subjected to a spinal cord contusion injury at the T10 vertebral level using an IH impactor (200 kdyn). One week after contusion, GH containing bFGF (20 µg) was injected into the lesion epicenter (bFGF - GH group). The GH-only group was designated as the control. Locomotor recovery was assessed over 9 weeks by Basso, Beattie, Bresnahan rating scale, along with inclined plane and Rota-rod testing. Sensory abnormalities in the hind paws of all the rats were evaluated at 5, 7, and 9 weeks. There were no significant differences in any of the motor assessments at any time point between the bFGF - GH group and the control GH group. The control GH group showed significantly more mechanical allodynia than did the group prior to injury. In contrast, the bFGF - GH group showed no statistically significant changes of mechanical withdrawal thresholds compared with pre-injury. Our findings suggest that bFGF-incorporated GH could have therapeutic potential for alleviating mechanical allodynia following spinal cord injury.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
明胶 来源于冷水鱼类的皮肤, solid
Sigma-Aldrich
明胶 来源于牛皮, Type B, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
明胶 来源于牛皮, gel strength ~225 g Bloom, Type B
Millipore
明胶 来源于猪皮肤, medium gel strength, suitable for microbiology
Millipore
明胶 来源于猪皮肤, suitable for microbiology, high gel strength