跳转至内容
Merck
CN
  • Study on effect of plasma surface treatments for diamond deposition by DC arc plasmatron.

Study on effect of plasma surface treatments for diamond deposition by DC arc plasmatron.

Journal of nanoscience and nanotechnology (2013-11-20)
In-Je Kang, Sang-Beom Joa, Heon-Ju Lee
摘要

To improve the thermal conductivity and wear resistance of ceramic materials in the field of renewable energy technologies, diamond coating by plasma processing has been carried out in recent years. This study's goal is to improve diamond deposition on Al2O3 ceramic substrates by plasma surface treatments. Before diamond deposition was carried out in a vacuum, plasma surface treatments using Ar gas were conducted to improve conditions for deposition. We also conducted plasma processing for diamond deposition on Al2O3 ceramic substrates using a DC arc Plasmatron. The Al2O3 ceramic substrates with diamond film (5 x 15 mm2), were investigated by SEM (Scanning Electron Microscopy), AFM (Atomic Force Microscopy) and XRD (X-ray Diffractometer). Then, the C-H stretching of synthetic diamond films by FTIR (Fourier Transform Infrared Spectroscopy) was studied. We identified nanocrystalline diamond films on the Al2O3 ceramic substrates. The results showed us that the deposition rate of diamond films was 2.3 microm/h after plasma surface treatments. Comparing the above result with untreated ceramic substrates, the deposition rate improved with the surface roughness of the deposited diamond films.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
氧化铝, standard grade, Brockmann I, activated, basic
Sigma-Aldrich
氧化铝, activated, Brockmann I, standard grade, neutral
Sigma-Aldrich
氧化铝, powder, primarily α phase, ≤10 μm avg. part. size, 99.5% trace metals basis
Sigma-Aldrich
氧化铝, Brockmann I, standard grade, activated, acidic
Sigma-Aldrich
氧化铝, nanopowder, <50 nm particle size (TEM)
Sigma-Aldrich
氧化铝, powder, 99.99% trace metals basis
Sigma-Aldrich
氧化铝, nanoparticles, <50 nm particle size (DLS), 20 wt. % in isopropanol
Sigma-Aldrich
氧化铝, nanopowder, 13 nm primary particle size (TEM), 99.8% trace metals basis
Sigma-Aldrich
氧化铝, fused, powder, primarily α-phase, -325 mesh
Sigma-Aldrich
氧化铝, pellets, 3 mm
Sigma-Aldrich
氧化铝, Corundum, α-phase, -100 mesh
Supelco
氧化铝, activated, neutral, Brockmann Activity I
Sigma-Aldrich
氧化铝, pore size 58 Å, ~150 mesh
Sigma-Aldrich
氧化铝, fused, powder, primarily α-phase, 100-200 mesh
Sigma-Aldrich
氧化铝, Type WN-6, Neutral, Activity Grade Super I
Sigma-Aldrich
氧化铝, nanoparticles, 30-60 nm particle size (TEM), 20 wt. % in H2O
Sigma-Aldrich
氧化铝, 99.997% trace metals basis
Sigma-Aldrich
氧化铝, single crystal substrate, <0001>
Sigma-Aldrich
金刚石, nanopowder, <10 nm particle size (TEM), ≥97% trace metals basis
Sigma-Aldrich
氧化铝, activated, Brockmann I, standard grade, neutral, free-flowing, Redi-Dri
Sigma-Aldrich
氧化铝, nanowires, diam. × L 2-6 nm × 200-400 nm
Sigma-Aldrich
介孔氧化铝, MSU-X (wormhole), average pore size 3.8 nm
Supelco
氧化铝, for the determination of hydrocarbons
Sigma-Aldrich
氧化铝, Brockmann I, activated, standard grade, free-flowing, Redi-Dri