跳转至内容
Merck
CN
  • Framework selection can influence pharmacokinetics of a humanized therapeutic antibody through differences in molecule charge.

Framework selection can influence pharmacokinetics of a humanized therapeutic antibody through differences in molecule charge.

mAbs (2014-12-18)
Bing Li, Devin Tesar, C Andrew Boswell, Hendry S Cahaya, Anne Wong, Jianhuan Zhang, Y Gloria Meng, Charles Eigenbrot, Homer Pantua, Jinyu Diao, Sharookh B Kapadia, Rong Deng, Robert F Kelley
摘要

Pharmacokinetic (PK) testing of a humanized (κI, VH3 framework) and affinity matured anti-hepatitis C virus E2-glycoprotein (HCV-E2) antibody (hu5B3.κ1VH3.v3) in rats revealed unexpected fast clearance (34.9 mL/day/kg). This antibody binds to the rat recycling receptor FcRn as expected for a human IgG1 antibody and does not display non-specific binding to baculovirus particles in an assay that is correlated with fast clearance in cynomolgus monkey. The antigen is not expressed in rat so target-dependent clearance does not contribute to PK. Removal of the affinity maturation changes (hu5B3.κ1VH3.v1) did not restore normal clearance. The antibody was re-humanized on a κ4, VH1 framework and the non-affinity matured version (hu5B3.κ4VH1.v1) was shown to have normal clearance (8.5 mL/day/kg). Since the change in framework results in a lower pI, primarily due to more negative charge on the κ4 template, the effect of additional charge variation on antibody PK was tested by incorporating substitutions obtained through phage display affinity maturation of hu5B3.κ1VH3.v1. A variant having a pI of 8.61 gave very fast clearance (140 mL/day/kg) whereas a molecule with pI of 6.10 gave slow clearance (5.8 mL/kg/day). Both antibodies exhibited comparable binding to rat FcRn, but biodistribution experiments showed that the high pI variant was catabolized in liver and spleen. These results suggest antibody charge can have an effect on PK through alterations in antibody catabolism independent of FcRn-mediated recycling. Furthermore, introduction of affinity maturation changes into the lower pI framework yielded a candidate with PK and virus neutralization properties suitable for clinical development.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
盐酸, ACS reagent, 37%
Sigma-Aldrich
氢氧化钠, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
氢氧化钠, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
磷酸, ACS reagent, ≥85 wt. % in H2O
Sigma-Aldrich
氢氧化钠 溶液, 50% in H2O
Sigma-Aldrich
盐酸, ACS reagent, 37%
Sigma-Aldrich
磷酸, ACS reagent, ≥85 wt. % in H2O
Sigma-Aldrich
氢氧化钠 溶液, BioUltra, Molecular Biology, 10 M in H2O
Sigma-Aldrich
磷酸, 85 wt. % in H2O, 99.99% trace metals basis
Sigma-Aldrich
氢氧化钠 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
盐酸 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
氢氧化钠, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
氢氧化钠, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets
Sigma-Aldrich
盐酸, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
盐酸, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
盐酸, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
氢氧化钠, reagent grade, 97%, powder
Sigma-Aldrich
磷酸, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥85%
Sigma-Aldrich
氢氧化钠, puriss. p.a., ACS reagent, reag. Ph. Eur., K ≤0.02%, ≥98%, pellets
Sigma-Aldrich
盐酸, 36.5-38.0%, BioReagent, Molecular Biology
Sigma-Aldrich
氢氧化钠, pellets, semiconductor grade, 99.99% trace metals basis
Sigma-Aldrich
磷酸, puriss. p.a., crystallized, ≥99.0% (T)
Sigma-Aldrich
磷酸, crystalline, ≥99.999% trace metals basis
Supelco
盐酸 溶液, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
氢氧化钠 溶液, 5.0 M
Sigma-Aldrich
磷酸, puriss., meets analytical specification of Ph. Eur., BP, NF, FCC, 85.0-88.0%
Sigma-Aldrich
氢氧化钠, beads, 16-60 mesh, reagent grade, 97%
Sigma-Aldrich
氢氧化钠, puriss. p.a., ACS reagent, K ≤0.02%, ≥98.0% (T), pellets
Sigma-Aldrich
磷酸 溶液, 85 wt. % in H2O, FCC, FG
Sigma-Aldrich
氢氧化钠, reagent grade, 97%, flakes