跳转至内容
Merck
CN
  • Insulin effects on glucose tolerance, hypermetabolic response, and circadian-metabolic protein expression in a rat burn and disuse model.

Insulin effects on glucose tolerance, hypermetabolic response, and circadian-metabolic protein expression in a rat burn and disuse model.

American journal of physiology. Regulatory, integrative and comparative physiology (2014-04-25)
Heather F Pidcoke, Lisa A Baer, Xiaowu Wu, Steven E Wolf, James K Aden, Charles E Wade
摘要

Insulin controls hyperglycemia after severe burns, and its use opposes the hypermetabolic response. The underlying molecular mechanisms are poorly understood, and previous research in this area has been limited because of the inadequacy of animal models to mimic the physiological effects seen in humans with burns. Using a recently published rat model that combines both burn and disuse components, we compare the effects of insulin treatment vs. vehicle on glucose tolerance, hypermetabolic response, muscle loss, and circadian-metabolic protein expression after burns. Male Sprague-Dawley rats were assigned to three groups: cage controls (n = 6); vehicle-treated burn and hindlimb unloading (VBH; n = 11), and insulin-treated burn and hindlimb unloading (IBH; n = 9). With the exception of cage controls, rats underwent a 40% total body surface area burn with hindlimb unloading, then IBH rats received 12 days of subcutaneous insulin injections (5 units·kg(-1)·day(-1)), and VBH rats received an equivalent dose of vehicle. Glucose tolerance testing was performed on day 14, after which blood and tissues were collected for analysis. Body mass loss was attenuated by insulin treatment (VBH = 265 ± 17 g vs. IBH = 283 ± 14 g, P = 0.016), and glucose clearance capacity was increased. Soleus and gastrocnemius muscle loss was decreased in the IBH group. Insulin receptor substrate-1, AKT, FOXO-1, caspase-3, and PER1 phosphorylation was altered by injury and disuse, with levels restored by insulin treatment in almost all cases. Insulin treatment after burn and during disuse attenuated the hypermetabolic response, increased glucose clearance, and normalized circadian-metabolic protein expression patterns. Therapies aimed at targeting downstream effectors may provide the beneficial effects of insulin without hypoglycemic risk.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
苯甲磺酰氟, ≥98.5% (GC)
Sigma-Aldrich
2-二(2-羟乙基)氨基-2-羟甲基-1,3-丙二醇, ≥98.0% (titration)
Sigma-Aldrich
苯甲磺酰氟, ≥99.0% (T)
SAFC
2-二(2-羟乙基)氨基-2-羟甲基-1,3-丙二醇
Sigma-Aldrich
2-二(2-羟乙基)氨基-2-羟甲基-1,3-丙二醇, BioPerformance Certified, suitable for cell culture, suitable for insect cell culture, ≥98.0%
Sigma-Aldrich
2-二(2-羟乙基)氨基-2-羟甲基-1,3-丙二醇, BioXtra, ≥98.0% (titration)
Sigma-Aldrich
2-二(2-羟乙基)氨基-2-羟甲基-1,3-丙二醇, BioUltra, ≥99.0% (NT)
SAFC
2-二(2-羟乙基)氨基-2-羟甲基-1,3-丙二醇
Sigma-Aldrich
2-二(2-羟乙基)氨基-2-羟甲基-1,3-丙二醇, Vetec, reagent grade, ≥98%, RNase and DNase free