跳转至内容
Merck
CN
  • Solvent-assisted lipid self-assembly at hydrophilic surfaces: factors influencing the formation of supported membranes.

Solvent-assisted lipid self-assembly at hydrophilic surfaces: factors influencing the formation of supported membranes.

Langmuir : the ACS journal of surfaces and colloids (2015-02-14)
Seyed R Tabaei, Joshua A Jackman, Seong-Oh Kim, Vladimir P Zhdanov, Nam-Joon Cho
摘要

As a simple and efficient technique, the solvent-assisted lipid bilayer (SALB) formation method offers a versatile approach to fabricating a planar lipid bilayer on solid supports. Corresponding mechanistic aspects and the role of various governing parameters remain, however, to be better understood. Herein, we first scrutinized the effect of lipid concentration (0.01 to 5 mg/mL) and solvent type (isopropanol, n-propanol, or ethanol) on SALB formation on silicon oxide in order to identify optimal conditions for this process. The obtained fluid-phase lipid layers on silicon oxide were investigated by using the quartz crystal microbalance with dissipation monitoring, epifluorescence microscopy, and atomic force microscopy. The experimental results indicate that, in alcohol, lipid attachment to the substrate is reversible and reaches equilibrium in accordance with the bulk lipid concentration. During the solvent-exchange step, the water fraction increases and the deposited lipids are converted into planar bilayer fragments, along with the concurrent adsorption and rupture of micelles within an optimal lipid concentration range. In addition, fluid-phase lipid bilayers were successfully formed on other substrates (e.g., chrome, indium tin oxide, and titanium oxide) that are largely intractable to conventional methods (e.g., vesicle fusion). Moreover, gel-phase lipid bilayers were fabricated as well. Depending on the phase state of the lipid bilayer during fabrication, the corresponding adlayer mass varied by approximately 20% between the fluid- and gel-phase states in a manner which is consistent with the molecular packing of lipids in the two arrangements. Taken together, our findings help to explain the mechanistic details of SALB formation, optimize the corresponding procedure, and demonstrate the general utility for fabricating gel- and fluid-phase planar lipid bilayers.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
乙醇,Pure 200纯度, Molecular Biology
Sigma-Aldrich
纯乙醇, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
纯乙醇, 200 proof
Sigma-Aldrich
纯乙醇, 200 proof, meets USP testing specifications
Sigma-Aldrich
纯乙醇, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
乙醇,Pure 190纯度, for molecular biology
Sigma-Aldrich
纯乙醇, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
酒精, BioUltra, Molecular Biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Supelco
无水乙醇, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
纯乙醇, 190 proof, meets USP testing specifications
Sigma-Aldrich
酒精, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Supelco
酒精, standard for GC
Sigma-Aldrich
酒精, puriss. p.a., absolute, ≥99.8% (GC)
Supelco
Ethanol 溶液, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
酒精, tested according to Ph. Eur.
Supelco
10% (v/v) 乙醇标准品, 10 % (v/v) in H2O, analytical standard
Sigma-Aldrich
80% v/v 乙醇固定液, suitable for fixing solution (blood films)
Sigma-Aldrich
纯乙醇, 190 proof, ACS reagent, meets USP testing specifications, Excise Tax-free, Permit for use required
Sigma-Aldrich
纯乙醇, 200 proof, ACS reagent, meets USP testing specifications, Excise Tax-free, Permit for use required
Sigma-Aldrich
酒精, absolute, sales not in Germany, ≥99.8% (vol.)
Sigma-Aldrich
纯乙醇, 160 proof, Excise Tax-free, Permit for use required