Merck
CN
  • T-cell-restricted T-bet overexpression induces aberrant hematopoiesis of myeloid cells and impairs function of macrophages in the lung.

T-cell-restricted T-bet overexpression induces aberrant hematopoiesis of myeloid cells and impairs function of macrophages in the lung.

Blood (2014-10-29)
Shoichi Iriguchi, Norihiro Kikuchi, Shin Kaneko, Emiko Noguchi, Yuko Morishima, Masashi Matsuyama, Keigyou Yoh, Satoru Takahashi, Hiromitsu Nakauchi, Yukio Ishii
摘要

Although overexpression of T-bet, a master transcription factor in type-1 helper T lymphocytes, has been reported in several hematologic and immune diseases, its role in their pathogenesis is not fully understood. In the present study, we used transgenic model mice (T-bet(tg/wt) and T-bet(tg/tg)) to investigate the effects of T-bet overexpression selectively in T lymphocytes on the development of hematologic and immune diseases. The results showed that T-bet overexpression in T cells spontaneously induced maturation arrest in the mononuclear phagocyte lineage, as well as spontaneous dermatitis and pulmonary alveolar proteinosis (PAP)-like disease in T-bet(tg/wt) and T-bet(tg/tg) mice, respectively. T-bet(tg/tg) alveoli with the PAP phenotype showed remarkable reorganization of alveolar mononuclear phagocyte subpopulations and impaired function, in addition to augmented T-cell infiltration. In addition, PAP development in T-bet(tg/tg) mice was found to be associated with increased migration of myeloid cells from the bone marrow into the peripheral blood. These findings reveal an unexpected link between T-bet overexpression in T lymphocytes and the development of PAP caused by reorganization of mononuclear phagocytes in the lung, and provide new insight into the molecular pathogenesis of secondary PAP accompanied by hematologic disorders.

材料
货号
品牌
产品描述

Millipore
过氧化氢 溶液, 3%, suitable for microbiology
Sigma-Aldrich
过氧化氢 溶液, 34.5-36.5%
Sigma-Aldrich
过氧化氢 溶液, contains ~200 ppm acetanilide as stabilizer, 3 wt. % in H2O
Sigma-Aldrich
过氧化氢 溶液, contains inhibitor, 35 wt. % in H2O