跳转至内容
Merck
CN
  • High throughput screening identifies modulators of histone deacetylase inhibitors.

High throughput screening identifies modulators of histone deacetylase inhibitors.

BMC genomics (2014-06-28)
Ann-Christin Gaupel, Thomas Begley, Martin Tenniswood
摘要

Previous studies from our laboratory and others have demonstrated that in addition to altering chromatin acetylation and conformation, histone deacetylase inhibitors (HDACi) disrupt the acetylation status of numerous transcription factors and other proteins. A whole genome yeast deletion library screen was used to identify components of the transcriptional apparatus that modulate the sensitivity to the hydroxamic acid-based HDACi, CG-1521. Screening 4852 haploid Saccharomyces cerevisiae deletion strains for sensitivity to CG-1521 identifies 407 sensitive and 80 resistant strains. Gene ontology (GO) enrichment analysis shows that strains sensitive to CG-1521 are highly enriched in processes regulating chromatin remodeling and transcription as well as other ontologies, including vacuolar acidification and vesicle-mediated transport. CG-1521-resistant strains include those deficient in the regulation of transcription and tRNA modification. Components of the SAGA histone acetyltransferase (HAT) complex are overrepresented in the sensitive strains, including the catalytic subunit, Gcn5. Cell cycle analysis indicates that both the wild-type and gcn5Δ strains show a G1 delay after CG-1521 treatment, however the gcn5Δ strain displays increased sensitivity to CG-1521-induced cell death compared to the wild-type strain. To test whether the enzymatic activity of Gcn5 is necessary in the response to CG-1521, growth assays with a yeast strain expressing a catalytically inactive variant of the Gcn5 protein were performed and the results show that this strain is less sensitive to CG-1521 than the gcn5Δ strain. Genome-wide deletion mutant screening identifies biological processes that affect the sensitivity to the HDAC inhibitor CG-1521, including transcription and chromatin remodeling. This study illuminates the pathways involved in the response to CG-1521 in yeast and provides incentives to understand the mechanisms of HDAC inhibitors in cancer cells. The data presented here demonstrate that components of the SAGA complex are involved in mediating the response to CG-1521. Additional experiments suggest that functions other than the acetyltransferase activity of Gcn5 may be sufficient to attenuate the effects of CG-1521 on cell growth.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
二甲基亚砜, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
二甲基亚砜, ACS reagent, ≥99.9%
Sigma-Aldrich
二甲基亚砜, Molecular Biology
Sigma-Aldrich
二甲基亚砜, suitable for HPLC, ≥99.7%
Sigma-Aldrich
二甲基亚砜, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
二甲基亚砜, ReagentPlus®, ≥99.5%
Sigma-Aldrich
二甲基亚砜, anhydrous, ≥99.9%
Sigma-Aldrich
二甲基亚砜, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
二甲基亚砜, puriss. p.a., ACS reagent, ≥99.9% (GC)
Sigma-Aldrich
二甲基亚砜, BioUltra, Molecular Biology, ≥99.5% (GC)
Sigma-Aldrich
二甲基亚砜, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
二甲基亚砜, PCR Reagent
Supelco
柠檬酸钠, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
二甲基亚砜, puriss. p.a., dried, ≤0.02% water
Supelco
二甲基亚砜, analytical standard
Sigma-Aldrich
柠檬酸盐浓缩液, BioReagent, suitable for coagulation assays, 4 % (w/v)
Supelco
二甲基亚砜, for inorganic trace analysis, ≥99.99995% (metals basis)
USP
二甲基亚砜, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
柠檬酸盐浓缩液, BioUltra, Molecular Biology, 1 M in H2O
二甲基亚砜, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
二甲基亚砜, Vetec, reagent grade, 99%