跳转至内容
Merck
CN
  • Tumor necrosis factor alpha has an early protective effect on retinal ganglion cells after optic nerve crush.

Tumor necrosis factor alpha has an early protective effect on retinal ganglion cells after optic nerve crush.

Journal of neuroinflammation (2014-11-20)
Caitlin E Mac Nair, Kimberly A Fernandes, Cassandra L Schlamp, Richard T Libby, Robert W Nickells
摘要

Glaucoma is an optic neuropathy that is characterized by the loss of retinal ganglion cells (RGCs) initiated by damage to axons in the optic nerve. The degeneration and death of RGCs has been thought to occur in two waves. The first is axogenic, caused by direct insult to the axon. The second is somatic, and is thought to be caused by the production of inflammatory cytokines from the activated retinal innate immune cells. One of the cytokines consistently linked to glaucoma and RGC damage has been TNFα. Despite strong evidence implicating this protein in neurodegeneration, a direct injection of TNFα does not mimic the rapid loss of RGCs observed after acute optic nerve trauma or exposure to excitotoxins. This suggests that our understanding of TNFα signaling is incomplete. RGC death was induced by optic nerve crush in mice. The role of TNFα in this process was examined by quantitative PCR of Tnfα gene expression, and quantification of cell loss in Tnfα (-/-) mice or in wild-type animals receiving an intraocular injection of exongenous TNFα either before or after crush. Signaling pathways downstream of TNFα were examined by immunolabeling for JUN protein accumulation or activation of EGFP expression in NFκB reporter mice. Optic nerve crush caused a modest increase in Tnfα gene expression, with kinetics similar to the activation of both macroglia and microglia. A pre-injection of TNFα attenuated ganglion cell loss after crush, while ganglion cell loss was more severe in Tnfα (-/-) mice. Conversely, over the long term, a single exposure to TNFα induced extrinsic apoptosis in RGCs. Müller cells responded to exogenous TNFα by accumulating JUN and activating NFκB. Early after optic nerve crush, TNFα appears to have a protective role for RGCs, which may be mediated through Müller cells.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
乙醇,Pure 200纯度, Molecular Biology
Sigma-Aldrich
纯乙醇, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
纯乙醇, 200 proof
Sigma-Aldrich
纯乙醇, 200 proof, meets USP testing specifications
Sigma-Aldrich
纯乙醇, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
乙醇,Pure 190纯度, for molecular biology
Sigma-Aldrich
纯乙醇, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
苯酚 溶液, Equilibrated with 10 mM Tris HCl, pH 8.0, 1 mM EDTA, BioReagent, Molecular Biology
Sigma-Aldrich
酒精, BioUltra, Molecular Biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Sigma-Aldrich
苯酚, puriss., meets analytical specification of Ph. Eur., BP, USP, ≥99.5% (GC), crystalline (detached)
Sigma-Aldrich
抗Sox9抗体, Chemicon®, from rabbit
Sigma-Aldrich
苯酚 溶液, Saturated with 0.01 M citrate buffer, pH 4.3 ± 0.2, BioReagent, Molecular Biology
Supelco
无水乙醇, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
纯乙醇, 190 proof, meets USP testing specifications
Sigma-Aldrich
苯酚, ≥99%
Supelco
酒精, standard for GC
Sigma-Aldrich
酒精, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
液状苯酚, ≥89.0%
Sigma-Aldrich
苯酚, puriss. p.a., ACS reagent, reag. Ph. Eur., 99.0-100.5%
Supelco
苯酚, Pharmaceutical Secondary Standard; Certified Reference Material
USP
苯酚, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
苯酚, Molecular Biology
Sigma-Aldrich
苯酚, BioXtra, ≥99.5% (GC)
Sigma-Aldrich
苯酚, ACS reagent, ≥99.0%
Supelco
苯酚 溶液, certified reference material, 500 μg/mL in methanol
Sigma-Aldrich
酒精, puriss. p.a., absolute, ≥99.8% (GC)
Supelco
Ethanol 溶液, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
苯酚, unstabilized, ReagentPlus®, ≥99%
Sigma-Aldrich
酒精, tested according to Ph. Eur.
Supelco
10% (v/v) 乙醇标准品, 10 % (v/v) in H2O, analytical standard