跳转至内容
Merck
CN
  • Modelling biofilm formation of Salmonella enterica ser. Newport as a function of pH and water activity.

Modelling biofilm formation of Salmonella enterica ser. Newport as a function of pH and water activity.

Food microbiology (2015-12-19)
Dafni Dimakopoulou-Papazoglou, Alexandra Lianou, Konstantinos P Koutsoumanis
摘要

The effect of pH and water activity (aw) on the formation of biofilm by Salmonella enterica ser. Newport, previously identified as a strong biofilm producer, was assessed. Biofilm formation was evaluated in tryptone soy broth at 37 °C and at different combinations of pH (3.3-7.8) and aw (0.894-0.997). In total, 540 biofilm formation tests in 108 pH and aw combinations were carried out in polystyrene microtiter plates using crystal violet staining and optical density (OD; 580 nm) measurements. Since the individual effects of pH and aw on biofilm formation had a similar pattern to that observed for microbial growth rate, cardinal parameter models (CPMs) were used to describe these effects. CPMs described successfully the effects of these two environmental parameters, with the estimated cardinal values of pHmin, pHopt, pHmax, awmin and awopt being 3.58, 6.02, 9.71, 0.894 and 0.994, respectively. The CPMs assumption of the multiplicative inhibitory effect of environmental factors was validated in the case of biofilm formation using additional independent data (i.e. 430 OD data at 86 different combinations of pH and aw). The validation results showed a good agreement (r(2) = 0.938) between observed and predicted OD with no systematic error. In the second part of this study, a probabilistic model predicting the pathogen's biofilm formation boundaries was developed, and the degree of agreement between predicted probabilities and observations was as high as 99.8%. Hence, the effect of environmental parameters on biofilm formation can be quantitatively expressed using mathematical models, with the latter models, in turn, providing useful information for biofilm control in food industry environments.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
盐酸, ACS reagent, 37%
Sigma-Aldrich
盐酸, ACS reagent, 37%
Sigma-Aldrich
甲醇, anhydrous, 99.8%
Sigma-Aldrich
氯化钠, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
盐酸 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
甲醇, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
盐酸, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
盐酸, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
甲醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
盐酸, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
甲醇, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
盐酸, 36.5-38.0%, BioReagent, Molecular Biology
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
氯化钠 溶液, 5 M
Supelco
盐酸 溶液, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
甲醇, BioReagent, ≥99.93%
Sigma-Aldrich
氯化钠, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
氯化氢 溶液, 1.0 M in diethyl ether
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
氯化钠 溶液, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
盐酸 溶液, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
盐酸 溶液, 32 wt. % in H2O, FCC
Sigma-Aldrich
氯化钠 溶液, 0.85%