跳转至内容
Merck
CN
  • Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte.

Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte.

Nature (2017-10-27)
Ziqing Liu, Li Wang, Joshua D Welch, Hong Ma, Yang Zhou, Haley Ruth Vaseghi, Shuo Yu, Joseph Blake Wall, Sahar Alimohamadi, Michael Zheng, Chaoying Yin, Weining Shen, Jan F Prins, Jiandong Liu, Li Qian
摘要

Direct lineage conversion offers a new strategy for tissue regeneration and disease modelling. Despite recent success in directly reprogramming fibroblasts into various cell types, the precise changes that occur as fibroblasts progressively convert to the target cell fates remain unclear. The inherent heterogeneity and asynchronous nature of the reprogramming process renders it difficult to study this process using bulk genomic techniques. Here we used single-cell RNA sequencing to overcome this limitation and analysed global transcriptome changes at early stages during the reprogramming of mouse fibroblasts into induced cardiomyocytes (iCMs). Using unsupervised dimensionality reduction and clustering algorithms, we identified molecularly distinct subpopulations of cells during reprogramming. We also constructed routes of iCM formation, and delineated the relationship between cell proliferation and iCM induction. Further analysis of global gene expression changes during reprogramming revealed unexpected downregulation of factors involved in mRNA processing and splicing. Detailed functional analysis of the top candidate splicing factor, Ptbp1, revealed that it is a critical barrier for the acquisition of cardiomyocyte-specific splicing patterns in fibroblasts. Concomitantly, Ptbp1 depletion promoted cardiac transcriptome acquisition and increased iCM reprogramming efficiency. Additional quantitative analysis of our dataset revealed a strong correlation between the expression of each reprogramming factor and the progress of individual cells through the reprogramming process, and led to the discovery of new surface markers for the enrichment of iCMs. In summary, our single-cell transcriptomics approaches enabled us to reconstruct the reprogramming trajectory and to uncover intermediate cell populations, gene pathways and regulators involved in iCM induction.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
单克隆抗-肌动蛋白,α-平滑肌, clone 1A4, ascites fluid
Sigma-Aldrich
抗-肌动蛋白, α-平滑肌- Cy3抗体,小鼠单克隆, clone 1A4, purified from hybridoma cell culture
Sigma-Aldrich
单克隆 抗-α-肌动蛋白(肌小节) 小鼠抗, clone EA-53, ascites fluid
Sigma-Aldrich
抗间隙连接蛋白43 兔抗, affinity isolated antibody, buffered aqueous solution