Skip to Content
Merck
CN
  • An arginine-aspartate network in the active site of bacterial TruB is critical for catalyzing pseudouridine formation.

An arginine-aspartate network in the active site of bacterial TruB is critical for catalyzing pseudouridine formation.

Nucleic acids research (2013-12-29)
Jenna Friedt, Fern M V Leavens, Evan Mercier, Hans-Joachim Wieden, Ute Kothe
ABSTRACT

Pseudouridine synthases introduce the most common RNA modification and likely use the same catalytic mechanism. Besides a catalytic aspartate residue, the contributions of other residues for catalysis of pseudouridine formation are poorly understood. Here, we have tested the role of a conserved basic residue in the active site for catalysis using the bacterial pseudouridine synthase TruB targeting U55 in tRNAs. Substitution of arginine 181 with lysine results in a 2500-fold reduction of TruB's catalytic rate without affecting tRNA binding. Furthermore, we analyzed the function of a second-shell aspartate residue (D90) that is conserved in all TruB enzymes and interacts with C56 of tRNA. Site-directed mutagenesis, biochemical and kinetic studies reveal that this residue is not critical for substrate binding but influences catalysis significantly as replacement of D90 with glutamate or asparagine reduces the catalytic rate 30- and 50-fold, respectively. In agreement with molecular dynamics simulations of TruB wild type and TruB D90N, we propose an electrostatic network composed of the catalytic aspartate (D48), R181 and D90 that is important for catalysis by fine-tuning the D48-R181 interaction. Conserved, negatively charged residues similar to D90 are found in a number of pseudouridine synthases, suggesting that this might be a general mechanism.

MATERIALS
Product Number
Brand
Product Description

Supelco
L-Aspartic acid, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
L-Aspartic acid, BioUltra, ≥99.5% (T)
SAFC
L-Aspartic acid
Sigma-Aldrich
Ribonucleic acid, transfer from bovine liver, Type XI, lyophilized powder
Sigma-Aldrich
DL-Aspartic acid, ≥99% (TLC)
Sigma-Aldrich
L-Aspartic acid, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
L-Aspartic acid, BioXtra, ≥99% (HPLC)
Sigma-Aldrich
Ribonucleic acid, transfer from baker′s yeast (S. cerevisiae), buffered aqueous solution
Sigma-Aldrich
Ribonucleic acid, transfer from baker′s yeast (S. cerevisiae), buffered aqueous solution
Sigma-Aldrich
L-Aspartic acid, from non-animal source, meets EP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
Ribonucleic acid, transfer from wheat germ, Type V, 15-19 units/mg solid
Sigma-Aldrich
Ribonucleic acid, transfer from baker′s yeast (S. cerevisiae), Type X-SA, lyophilized powder
Supelco
L-Aspartic acid, Pharmaceutical Secondary Standard; Certified Reference Material
Aspartic acid, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Ribonucleic acid, transfer from Escherichia coli, Type XX, Strain W, lyophilized powder
Sigma-Aldrich
L-Aspartic acid potassium salt, ≥98% (HPLC)