Skip to Content
Merck
CN
  • Neurons in the most superficial lamina of the mouse superior colliculus are highly selective for stimulus direction.

Neurons in the most superficial lamina of the mouse superior colliculus are highly selective for stimulus direction.

The Journal of neuroscience : the official journal of the Society for Neuroscience (2015-05-23)
Samsoon Inayat, Jad Barchini, Hui Chen, Liang Feng, Xiaorong Liu, Jianhua Cang
ABSTRACT

The superior colliculus (SC) is a layered midbrain structure important for multimodal integration and sensorimotor transformation. Its superficial layers are purely visual and receive depth-specific projections from distinct subtypes of retinal ganglion cells. Here we use two-photon calcium imaging to characterize the response properties of neurons in the most superficial lamina of the mouse SC, an undersampled population with electrophysiology. We find that these neurons have compact receptive fields with primarily overlapping ON and OFF subregions and are highly direction selective. The high selectivity is observed in both excitatory and inhibitory neurons. These neurons do not cluster according to their direction preference and lack orientation selectivity. In addition, we perform single-unit recordings and show that direction selectivity declines with depth in the SC. Together, our experiments reveal for the first time a highly specialized lamina in the most superficial SC for movement direction, a finding that has important implications for understanding signal transformation in the early visual system.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride, random crystals, 99.9% trace metals basis
Sigma-Aldrich
HEPES, BioUltra, Molecular Biology, ≥99.5% (T)
Sigma-Aldrich
Sodium chloride solution, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
Cresyl Violet acetate, certified by the BSC
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
SAFC
HEPES
SAFC
HEPES
Sigma-Aldrich
HEPES, Vetec, reagent grade, 99.5%
Sigma-Aldrich
Sodium chloride, Vetec, reagent grade, 99%
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O