- Uterine Leiomyosarcoma Tumorigenesis in Lmp2-deficient Mice: Involvement of Impaired Anti-oncogenic Factor IRF1.
Uterine Leiomyosarcoma Tumorigenesis in Lmp2-deficient Mice: Involvement of Impaired Anti-oncogenic Factor IRF1.
Uterine leiomyosarcoma (Ut-LMS) is a highly metastatic smooth muscle neoplasm. We have previously reported that low molecular mass protein2 Lmp2-deficient mice spontaneously developed Ut-LMS, which implicated this protein as an anti-oncogenic candidate. We also suggested that LMP2 may negatively regulate Ut-LMS independently of its role in the proteasome. Initially described as a transcription factor able to activate the expression of interferon-gamma (IFN-γ)-responsive genes, interferon regulatory factor-1 (IRF1) has been shown to play roles in the immune response, and tumor suppression. The aim of this study was to elucidate the molecular mechanism of sarcomagenesis of Ut-LMS using human and mouse uterine tissues. The expression of the IFN-γ signal molecules, IRF1 and -2, STAT1, and LMP2, -3, -7 and -10 were examined by western blot analysis, electrophoretic mobility shift assay and immunohistochemistry in human and mouse uterine tissues. Physiological significance of IRF1 in sarcomagenesis of Ut-LMS was demonstrated by xenograft studies. In the present study, several lines of evidence indicated that although treatment with IFN-γ strongly induced the activation of STAT1 as a transcriptional activator, its target molecule, IRF1, was not clearly produced in Lmp2-deficient uterine smooth muscle cells (Ut-SMCs). Defective expression of IRF1 in the IFN-γ-induced signaling molecules may result in the malignant transformation of Ut-SMCs. The modulation of LMP2 may lead to new therapeutic approaches in human Ut-LMS.