登录 查看组织和合同定价。
选择尺寸
关于此项目
线性分子式:
CH3COOLi · 2H2O
化学文摘社编号:
分子量:
102.02
UNSPSC Code:
12352200
Beilstein/REAXYS Number:
3564320
MDL number:
NACRES:
NA.22
Assay:
≥99.9% trace metals basis
Form:
powder or crystals
solid
solid
Solubility:
water: soluble
产品名称
乙酸锂 二水合物, ≥99.9% trace metals basis
InChI key
IAQLJCYTGRMXMA-UHFFFAOYSA-M
SMILES string
[Li+].[H]O[H].[H]O[H].CC([O-])=O
InChI
1S/C2H4O2.Li.2H2O/c1-2(3)4;;;/h1H3,(H,3,4);;2*1H2/q;+1;;/p-1
type
(High purity Salts)
assay
≥99.9% trace metals basis
form
powder or crystals
solid
greener alternative product characteristics
Catalysis
Learn more about the Principles of Green Chemistry.
sustainability
Greener Alternative Product
impurities
≤1000 ppm (trace metals analysis)
color
white to off-white
pH
≤9.5
mp
53-56 °C (lit.)
solubility
water: soluble
anion traces
chloride (Cl-): ≤20 ppm
sulfate (SO42-): ≤50 ppm
cation traces
Al: <100 ppm
Cu: <100 ppm
Fe: <100 ppm
K: <100 ppm
Mg: <100 ppm
Na: ≤50 ppm
Pb: <100 ppm
Zn: <100 ppm
application(s)
battery manufacturing
greener alternative category
Quality Level
正在寻找类似产品? 访问 产品对比指南
Application
Lithium acetate dihydrate is a significant salt with a wide range of applications. It is utilized as a component in drug formulation and therapy, as a buffer for DNA and RNA gel electrophoresis, and as an additive or catalyst in textiles and polymer production. Additionally, it serves as a ferromagnetic nanoparticle, catalyst, and precursor material for batteries
Our Lithium acetate dihydrate, with a purity of 99.9% on a trace metals basis, serves as an excellent precursor for batteries and catalysis. Its low trace metals content and anions make it particularly well-suited for these applications.
Our Lithium acetate dihydrate, with a purity of 99.9% on a trace metals basis, serves as an excellent precursor for batteries and catalysis. Its low trace metals content and anions make it particularly well-suited for these applications.
- Lithium Iron Pyrophosphate (LiFe1.5P2O7) with monoclinic structures was successfully synthesized using Lithium acetate dihydrate in combination with other metal acetates, in a ratio of Li/Fe/P = 1.05:1.5:2, through a wet-chemical method. Maintaining the appropriate lithium concentration is crucial to prevent stoichiometry loss in the final product. This material has found application as a positive electrode in Lithium-ion batteries. Remarkably, the electrode demonstrates excellent incremental capacity, indicating a stable structure during the initial cycle, with redox peaks observed at 3.33 and 3.22 V versus Li0/Li+
- LiMn2O4 films were synthesized on Au foil using the sol-gel and spin-coating techniques, employing Lithium acetate dihydrate and manganese acetate tetrahydrate in a Li/Mn ratio of 1.1/2. The particles used had an average size of approximately 300 nm. To investigate the morphological changes during over-discharging, the EC-HS-AFM technique was utilized. The images captured revealed the presence of wrinkle-like and step-like structures on the particle surface. These structures were attributed to stresses induced by structural distortion during the phase transformation from cubic (LiMn2O4) to tetragonal (Li2Mn2O4). The formation of the Li2Mn2O4 phase was confirmed through ex situ XRD analysis. Furthermore, by analyzing the EC-HS-AFM images, the particle surface area was quantitatively extracted as a function of potential, providing insights into the irreversible expansion/contraction behavior of the particles
- Cobalt-free cathodes, specifically Mg and Zr modified LiNi0.5Mn1.5O4 (LNMO), were synthesized using Lithium acetate dihydrate and other metal acetates via a citric acid sol-gel method. The modifications aimed to improve the electrochemical performance of the cathode, particularly at high temperatures, by limiting Mn dissolution and adjusting interstitial sites. This modification resulted in increased stability of the cathode, extending the cycle life to 1000 cycles at both 25 and 50 °C
Features and Benefits
- Water soluble
- Medium purity (99.9%)
- Low trace metals in ppm level
- Cost effective
- Low Chloride and sulfate levels
General description
Lithium acetate dihydrate is a soluble white compound with a one-dimensional structure. Lithium acetate dihydrate has various applications in industries such as pharmaceuticals, ceramics, and research laboratories. It is often utilized as a source of lithium ions in chemical reactions and as a precursor in the synthesis of other lithium compounds.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of the 12 Principles of Green Chemistry. This product has been enhanced for catalytic efficiency. Click here for more information.
存储类别
11 - Combustible Solids
wgk
WGK 1
flash_point_f
Not applicable
flash_point_c
Not applicable
法规信息
新产品
此项目有
Novel Lithium Iron Pyrophosphate (LiFe1.5P2O7) as a Positive Electrode for Li-Ion Batteries
Ramana C V, et al.
Chemistry of Materials, 19, 5319?5324-5319?5324 (2007)
Evaluation of Electronic?Ionic Transport Properties of a Mg/Zr-Modified LiNi0.5Mn1.5O4 Cathode for Li-Ion Batteries
Balducci L, et al.
ACS Applied Materials & Interfaces, 15, 55620?55632-55620?55632 (2023)
Operando Imaging of Over-Discharge-Induced Surface Morphology Evolutions of LiMn2O4 Submicron-Sized Particles by Electrochemical High-Speed Atomic Force Microscopy
Yang P, et al.
Langmuir, 39, 13801?13806-13801?13806 (2023)
Anhydrous Lithium Acetate Polymorphs and Its Hydrates: Three-Dimensional Coordination Polymers
Casado M F J, et al.
Crystal Growth & Design, 11, 1021-1032 (2011)
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持