产品名称
硅, rod, 25mm, diameter 2.0mm, crystalline, 100%
InChI
1S/Si
SMILES string
[Si]
InChI key
XUIMIQQOPSSXEZ-UHFFFAOYSA-N
assay
100%
form
rod
manufacturer/tradename
Goodfellow 664-652-76
L × diam.
25 mm × 2.0 mm
bp
2355 °C (lit.)
mp
1410 °C (lit.)
density
2.33 g/mL at 25 °C (lit.)
正在寻找类似产品? 访问 产品对比指南
General description
For updated SDS information please visit www.goodfellow.com.
Legal Information
Product of Goodfellow
法规信息
新产品
此项目有
Emil Rudobeck et al.
Radiation research, 181(4), 407-415 (2014-03-15)
An unavoidable complication of space travel is exposure to radiation consisting of high-energy charged particles (HZE), such as Fe and Si nuclei. HZE radiation can affect neuronal functions at the level of the synapse or neuronal soma without inducing significant
Dean G Johnson et al.
Advances in chronic kidney disease, 20(6), 508-515 (2013-11-12)
The development of wearable or implantable technologies that replace center-based hemodialysis (HD) hold promise to improve outcomes and quality of life for patients with ESRD. A prerequisite for these technologies is the development of highly efficient membranes that can achieve
Keith R Martin
Metal ions in life sciences, 13, 451-473 (2014-01-29)
Silicon is the second most abundant element in nature behind oxygen. As a metalloid, silicon has been used in many industrial applications including use as an additive in the food and beverage industry. As a result, humans come into contact
David J Savage et al.
Current opinion in pharmacology, 13(5), 834-841 (2013-07-13)
Biomedical applications of porous silicon include drug delivery, imaging, diagnostics and immunotherapy. This review summarizes new silicon particle fabrication techniques, dynamics of cellular transport, advances in the multistage vector approach to drug delivery, and the use of porous silicon as
Yang Gao et al.
Journal of nanoscience and nanotechnology, 14(6), 4469-4474 (2014-04-18)
We have developed a novel method to fabricate micro/nano structure based on the coherent diffraction lithography, and acquired periodic silicon tubular gratings with deep nano-scale tapered profiles at the top part. The optical properties of these tubular gratings were similar
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持