跳转至内容
Merck
CN

MAB1586

抗NMDAR1抗体,(全部剪接变体),克隆R1JHL

clone R1JHL, Chemicon®, from mouse

别名:

Anti-GluN1, Anti-NDHMSD, Anti-NDHMSR, Anti-NMD-R1, Anti-NMDA1, Anti-NMDAR1, Anti-NR1

登录 查看组织和合同定价。

选择尺寸


关于此项目

UNSPSC Code:
12352203
NACRES:
NA.41
eCl@ss:
32160702
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助

产品名称

抗NMDAR1抗体,(全部剪接变体),克隆R1JHL, clone R1JHL, Chemicon®, from mouse

biological source

mouse

conjugate

unconjugated

antibody form

affinity purified immunoglobulin

antibody product type

primary antibodies

clone

R1JHL, monoclonal

species reactivity

mouse, rat, human

manufacturer/tradename

Chemicon®

technique(s)

western blot: suitable

isotype

Not specified

UniProt accession no.

shipped in

dry ice

target post-translational modification

unmodified

Quality Level

Gene Information

human ... GRIN1(2902)
mouse ... Grin1(14810)
rat ... Grin1(24408)

Application

使用经验证可用于WB的抗NMDAR1抗体(全部剪接变体)克隆R1JHL检测NMDAR1。
研究子类别
神经递质& 受体
研究类别
神经科学
蛋白质印迹:1:300。建议将抗体稀释在含有5%脱脂牛奶和0.05%叠氮化钠的TBST(20 mM Tris-HCl,137 mM NaCl,1%吐温-20,pH值7.6)中。稀释后的抗体至少可以使用5次,而不会出现明显的信号下降。两次使用之间应储存在2-8°C下。

免疫沉淀:每200μ克裂解物中3μ克将定量沉淀200μ克大鼠脑裂解物中的全部NMDA R1。

最佳工作稀释度必须由最终用户进行确定。

Biochem/physiol Actions

NMDA受体亚基1(全部剪接变体)。没有观察到与其他NMDA受体亚基的交叉反应性。可通过免疫印迹识别大鼠脑海马匀浆中的103-116 kDa蛋白。

Disclaimer

除非我们的产品目录或产品附带的其他公司文档另有说明,否则我们的产品仅供研究使用,不得用于任何其他目的,包括但不限于未经授权的商业用途、体外诊断用途、离体或体内治疗用途或任何类型的消费或应用于人类或动物。

Immunogen

大鼠NR1氨基酸1-564的融合蛋白。
表位:(全部剪接变体)

Physical form

亲和纯化的免疫球蛋白。 冻干。用50μL PBS,pH 7.4复溶。不含防腐剂。
形式:纯化

Preparation Note

在接收之日起,将冻干物料在-20°℃下保存长达6个月。 重溶后,以未稀释等分试样在 -20°C 下可保存长达 6个月。应避免反复冻/融循环。

Legal Information

CHEMICON is a registered trademark of Merck KGaA, Darmstadt, Germany

未找到合适的产品?  

试试我们的产品选型工具.

存储类别

10 - Combustible liquids

wgk

WGK 1

flash_point_f

Not applicable

flash_point_c

Not applicable


分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Meilin Tian et al.
Scientific reports, 6, 34751-34751 (2016-10-08)
Allostery is essential to neuronal receptor function, but its transient nature poses a challenge for characterization. The N-terminal domains (NTDs) distinct from ligand binding domains are a major locus for allosteric regulation of NMDA receptors (NMDARs), where different modulatory binding
Lenka Mikasova et al.
Brain : a journal of neurology, 135(Pt 5), 1606-1621 (2012-05-01)
Autoimmune synaptic encephalitides are recently described human brain diseases leading to psychiatric and neurological syndromes through inappropriate brain-autoantibody interactions. The most frequent synaptic autoimmune encephalitis is associated with autoantibodies against extracellular domains of the glutamatergic N-methyl-d-aspartate receptor, with patients developing
María Rodríguez-Muñoz et al.
Oncotarget, 6(34), 35458-35477 (2015-10-16)
In the brain, the histidine triad nucleotide-binding protein 1 (HINT1) and sigma 1 receptors (σ1Rs) coordinate the activity of certain G-protein coupled receptors (GPCRs) with that of glutamate N-methyl-D-aspartate receptors (NMDARs). To determine the role of HINT1-σ1R in the plasticity
Alex Bicket et al.
American journal of physiology. Cell physiology, 310(10), C808-C820 (2016-03-25)
Equilibrative nucleoside transporters (ENTs) facilitate the flux of nucleosides, such as adenosine, and nucleoside analog (NA) drugs across cell membranes. A correlation between adenosine flux and calcium-dependent signaling has been previously reported; however, the mechanistic basis of these observations is
Nami Tajima et al.
Nature, 534(7605), 63-68 (2016-05-03)
The physiology of N-methyl-d-aspartate (NMDA) receptors is fundamental to brain development and function. NMDA receptors are ionotropic glutamate receptors that function as heterotetramers composed mainly of GluN1 and GluN2 subunits. Activation of NMDA receptors requires binding of neurotransmitter agonists to

相关内容

Glutamate is an excitatory neurotransmitter found in the synaptic vesicles of glutamatergic synapses. The post-synaptic neurons in these synapses contain ionotropic and metabotropic glutamate receptors. Glutamate binds to AMPA (α-amino-3-hydroxy-5- methylisoxazole-4-propionic acid) subtype glutamate receptors, leading to sodium influx into the post-synaptic cell and resulting in neuronal excitability and synaptic transmission. The NMDA (N-methyl-d-aspartate) subtype glutamate receptors, on the other hand, regulate synaptic plasticity, and can influence learning and memory. The metabotropic g-protein coupled mGluRs modulate downstream calcium signaling pathways and indirectly influence the synapse’s excitability. The synaptic architecture includes intracellular scaffolding proteins (PSD-95, GRIP), intercellular cell adhesion molecules (NCAMs, N-Cadherins), and a variety of signaling proteins (CaMKII/PKA, PP1/PP2B). Processes critical for synaptic transmission and plasticity are influenced by these molecules and their interactions. When the function of these molecules is disrupted, it leads to synaptic dysfunction and degeneration, and can contribute to dementia as seen in Alzheimer’s disease.

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系客户支持