登录 查看组织和合同定价。
选择尺寸
关于此项目
经验公式(希尔记法):
Fe2O3
化学文摘社编号:
分子量:
159.69
UNSPSC Code:
12352302
PubChem Substance ID:
EC Number:
215-168-2
MDL number:
Assay:
≥98.0%
Grade:
SAJ first grade
Form:
solid
InChI key
JEIPFZHSYJVQDO-UHFFFAOYSA-N
InChI
1S/2Fe.3O
SMILES string
O=[Fe]O[Fe]=O
grade
SAJ first grade
assay
≥98.0%
form
solid
reaction suitability
reagent type: catalyst
core: iron
availability
available only in Japan
正在寻找类似产品? 访问 产品对比指南
存储类别
13 - Non Combustible Solids
wgk
nwg
flash_point_f
Not applicable
flash_point_c
Not applicable
ppe
dust mask type N95 (US), Eyeshields, Gloves
法规信息
新产品
此项目有
Brian T Farrell et al.
Neurology, 81(3), 256-263 (2013-06-19)
The study goal was to assess the benefits and potential limitations in the use of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles in the MRI diagnosis of CNS inflammatory diseases and primary CNS lymphoma. Twenty patients with presumptive or known CNS
Diana Couto et al.
Toxicology letters, 225(1), 57-65 (2013-12-03)
Iron oxide nanoparticles (ION), with different coatings and sizes, have attracted extensive interest in the last years to be applied in drug delivery, cancer therapy and as contrast agents in imagiologic techniques such as magnetic resonance imaging. However, the safety
Hongrong Jiang et al.
Journal of biomedical nanotechnology, 9(4), 674-684 (2013-04-30)
In present study, we put forward an approach to prepare three-layer core-shell Fe3O4@SiO2@Au magnetic nanocomposites via the combination of self-assembling, seed-mediated growing and multi-step chemical reduction. The Fe3O4@SiO2@Au magnetic nanocomposites were analyzed and characterized by transmission electron microscope (TEM), scanning
J Sangeetha et al.
Journal of biomedical nanotechnology, 9(5), 751-764 (2013-06-28)
We present methodologies to functionalize iron oxide (Fe3O4) nanoparticles with biosurfactants and biocompatibility results. Positively charged Fe3O4 nanoparticles of average hydrodynamic size -26 nm is functionalized with four different molecules of interest, viz., surfactin, rhamnolipid, polyethylene glycol (PEG) and dextran.
Alice Panariti et al.
Journal of biomedical nanotechnology, 9(9), 1556-1569 (2013-08-29)
Magnetic nanoparticles have emerged as important players in current research in modern medicine since they can be used in medicine for diagnosis and/or therapeutic treatment of diseases. Among many therapeutic applications of iron-based nanoparticles, drug delivery and photothermal therapy are
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持