产品名称
Anti-LPAR2 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
biological source
rabbit
conjugate
unconjugated
antibody form
affinity isolated antibody
antibody product type
primary antibodies
clone
polyclonal
product line
Prestige Antibodies® Powered by Atlas Antibodies
form
buffered aqueous glycerol solution
species reactivity
human
technique(s)
immunohistochemistry: 1:20- 1:50
immunogen sequence
LLLDGLGCESCNVLAVEKYFLLLAEANSLVNAAVYSCRDAEMRRTFRRLLCCACLRQSTRESVHYTSSAQGGASTRIMLPENGHPLMDSTL
UniProt accession no.
shipped in
wet ice
storage temp.
−20°C
target post-translational modification
unmodified
Quality Level
Gene Information
human ... LPAR2(9170)
Disclaimer
Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.
Application
Applications in which this antibody has been used successfully, and the associated peer-reviewed papers, are given below.
Immunohistochemistry (1 paper)
Immunohistochemistry (1 paper)
Biochem/physiol Actions
LPAR2 (Lysophosphatidic acid receptor 2) is involved in various downstream signaling pathways such as RhoA-ROCK and STAT-3 signaling. It plays a key role in the colorectal cancer (CRC) pathology. In CRC progression it controls cell cycle progression, migration, invasion, and proliferation. During cell migration, it has been reported that cell-cell binding ability depends on the internalization of N-cadherin downstream of lysophosphatidic acid (LPA) receptor 2. LPAR2 is also associated with the receptor-mediated phospholipase C-β3 activation. During activation, C-terminal PDZ domain-binding motif of LPAR2 directly binds to the second PDZ domain of Na(+)/H(+) exchanger regulatory factor2 (NHERF2). Later, that LPAR2 linked PDZ domain of NHERF2 binds to PLC-β3 and forms a complex, which is responsible for gene silencing of PLC-β3.
Features and Benefits
Prestige Antibodies® are highly characterized and extensively validated antibodies with the added benefit of all available characterization data for each target being accessible via the Human Protein Atlas portal linked just below the product name at the top of this page. The uniqueness and low cross-reactivity of the Prestige Antibodies® to other proteins are due to a thorough selection of antigen regions, affinity purification, and stringent selection. Prestige antigen controls are available for every corresponding Prestige Antibody and can be found in the linkage section.
Every Prestige Antibody is tested in the following ways:
Every Prestige Antibody is tested in the following ways:
- IHC tissue array of 44 normal human tissues and 20 of the most common cancer type tissues.
- Protein array of 364 human recombinant protein fragments.
General description
LPAR2 (Lysophosphatidic acid receptor 2) is a bioactive lysophospholipid belonging to the endothelial cell differentiation gene (EDG) family of GPCRs. It is widely expressed in different tissues and cell types.
Immunogen
Lysophosphatidic acid receptor 2 recombinant protein epitope signature tag (PrEST)
Other Notes
Corresponding Antigen APREST72734
Physical form
Solution in phosphate-buffered saline, pH 7.2, containing 40% glycerol and 0.02% sodium azide
Legal Information
Prestige Antibodies is a registered trademark of Merck KGaA, Darmstadt, Germany
未找到合适的产品?
试试我们的产品选型工具.
存储类别
10 - Combustible liquids
wgk
WGK 1
flash_point_f
Not applicable
flash_point_c
Not applicable
法规信息
新产品
此项目有
Yong-Seok Oh et al.
Molecular and cellular biology, 24(11), 5069-5079 (2004-05-15)
Lysophosphatidic acid (LPA) activates a family of cognate G protein-coupled receptors and is involved in various pathophysiological processes. However, it is not clearly understood how these LPA receptors are specifically coupled to their downstream signaling molecules. This study found that
Fernanda Leve et al.
PloS one, 10(9), e0139094-e0139094 (2015-09-30)
Lysophosphatidic acid (LPA) plays a critical role in the proliferation and migration of colon cancer cells; however, the downstream signaling events underlying these processes remain poorly characterized. The aim of this study was to investigate the signaling pathways triggered by
Sei Kuriyama et al.
The Journal of cell biology, 206(1), 113-127 (2014-07-09)
Collective cell migration (CCM) and epithelial-mesenchymal transition (EMT) are common to cancer and morphogenesis, and are often considered to be mutually exclusive in spite of the fact that many cancer and embryonic cells that have gone through EMT still cooperate
Shigeru Hashimoto et al.
Nature communications, 7, 10656-10656 (2016-02-09)
Acquisition of mesenchymal properties by cancer cells is critical for their malignant behaviour, but regulators of the mesenchymal molecular machinery and how it is activated remain elusive. Here we show that clear cell renal cell carcinomas (ccRCCs) frequently utilize the
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系客户支持