Merck
CN

L3287

Sigma-Aldrich

Escort IV 转染试剂

Lipid reagent for transient and stable transfection of mammalian and insect cells.

登录查看公司和协议定价

别名:
Gene delivery
NACRES:
NA.25

等级

for molecular biology

质量水平

形式

liquid (aqueous solution)

用途

 mL sufficient for 160-500 transfections

浓度

1 mg/mL

technique(s)

transfection: suitable

储存温度

2-8°C

相关类别

一般描述

Escort IV是由专利的聚阳离子脂质体和中性非转染脂质体构成的独特配方。这种脂质体构成的化合物可用于向不同类型的真核细胞转染核酸。

应用

适用于将核酸瞬时和稳定转染到培养的真核细胞中。 每 6 cm 细胞培养板使用约 4-16μL Escort IV 和 2μg DNA。方案优化提供了非常高效的转染。关于使用 Escort IV 成功转染的细胞列表,请参见 转染试剂选择指南

特点和优势

  • 适于稳定和瞬时转染
  • 针对广泛的细胞类型进行了优化
  • 低细胞毒性
  • 兼容含血清和不含血清的转染实验
  • 非常适于 Sf9, Sf21 和S2昆虫细胞

组分

Escort IV 配方:
1 mg/mL溶于水的总脂质体

请注意,Escort IV 中使用的脂质体具体类别属于机密信息。

注意

注意:不要冻存。

原理

在不存在血清条件下,将Escort IV与DNA混合,即可形成稳定的复合物。该复合物性质稳定,可直接加入到细胞培养基中,并在培养基中与细胞膜融合,将DNA释放到细胞质中。注意:复合物的形成受到血清抑制,但一旦形成稳定的复合物,即便存在血清也无妨。

法律信息

Escort is a trademark of Sigma-Aldrich Co. LLC

储存分类代码

10 - Combustible liquids

WGK

WGK 3

闪点(°F)

Not applicable

闪点(°C)

Not applicable

个人防护装备

Eyeshields, Gloves


分析证书(COA)

输入产品批号来搜索 分析证书(COA) 。批号可以在产品标签上"批“ (Lot或Batch)字后找到。

已有该产品?

为方便起见,与您过往购买产品相关的文件已保存在文档库中。

访问文档库

难以找到您所需的产品或批次号码?

在网站页面上,产品编号会附带包装尺寸/数量一起显示(例如:T1503-25G)。请确保 在“产品编号”字段中仅输入产品编号 (示例: T1503).

示例

T1503
货号
-
25G
包装规格/数量

其它示例:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

输入内容 1.000309185)

遇到问题?欢迎随时联系我们技术服务 寻求帮助

批号可以在产品标签上"批“ (Lot或Batch)字后面找到。

Aldrich 产品

  • 如果您查询到的批号为 TO09019TO 等,请输入去除前两位字母的批号:09019TO。

  • 如果您查询到的批号含有填充代码(例如05427ES-021),请输入去除填充代码-021的批号:05427ES。

  • 如果您查询到的批号含有填充代码(例如 STBB0728K9),请输入去除填充代码K9的批号:STBB0728。

未找到您寻找的产品?

部分情况下,可能未在线提供COA。如果搜索不到COA,可在线索取。

索取COA

  1. Which document(s) contains shelf-life or expiration date information for a given product?

    If available for a given product, the recommended re-test date or the expiration date can be found on the Certificate of Analysis.

  2. How do I get lot-specific information or a Certificate of Analysis?

    The lot specific COA document can be found by entering the lot number above under the "Documents" section.

  3. How do I find price and availability?

    There are several ways to find pricing and availability for our products. Once you log onto our website, you will find the price and availability displayed on the product detail page. You can contact any of our Customer Sales and Service offices to receive a quote.  USA customers:  1-800-325-3010 or view local office numbers.

  4. What is the Department of Transportation shipping information for this product?

    Transportation information can be found in Section 14 of the product's (M)SDS.To access the shipping information for this material, use the link on the product detail page for the product. 

  5. Why do I see a precipitate in my cell culture after lipid-based transfection?

    The precipitate is likely excess lipid or EDTA and will probablly not affect transfection efficiency.  If your DNA plasmid is suspended in TE, be sure the concentration of EDTA is <0.3 mM, or suspend the DNA in sterile molecular biology grade water instead.

  6. Is low cell passage number an important consideration for transfection?

    Yes, we recommend cells are at a low passage when being  used for any application, including transfection.  The reason why depends on what type of cells they are.  Primary cells will undergo a finite number of divisions, and as they get closer to senesence they divide more slowly - both affecting their ability to take up DNA (transient transfection), and minimizing their abillity to incorporate the DNA into the genome (stable selection).Cultured common cell lines are often immortalized, and generally continue to aquire mutations, leading to a heterogenous population that may perform differently from cells of lower passage number - leading to results that are not reproducible.

  7. Is the size of the plasmid an important consideration for transfection?

    The size of the plasmid should be considered when selecting a transfection reagent with the best efficiency.  In general, larger sized plasmids should easily transfect with readily available transfection reagents, as along as the plasmid DNA is of high purity.

  8. Is optimizing the transfection protocol important?

    For many common cell lines, transfection reagent efficiency is very high and the protocols will not require any optimization.  For hard-to-transfect cells or those ultimately expressing a toxic protein, the protocol should be optimized for best transfection efficiency.  Taking time to optimize will give you more transfected cells with each procedure, which can mean more protein expressed and results that are reproducible.

  9. How do I choose a transfection reagent?

    There are many guides that help you select a transfection reagent.  In general, consider:The type of cell(s) you will transfectThe type of nucleic acid or protein you will introduce to the cellThe composition of your cell culture mediumThe need for stable or transient transfectionThe equipment you have availableThe other factors important to you - cost, protocol flexibility, ease of use, etc.

  10. What quality does the DNA need to be in order to use it for transfection?

    The DNA needs to be good quality or it may cause the cells to lyse and/or they won't transfect efficiently.  Plasmid DNA prepared with a column-based DNA purification kit is suitable for transfections.  Sigma's GenElute Minprep, Midiprep and Maxiprep kits work well for DNA plasmid purification.  After preparing the DNA, confirm the OD A260:A280 ratio is greater than 1.6 for use in plasmid transfections.

  11. What is transfection efficiency?

    Transfection efficiency is a measure of how many cells take up the DNA during the transfection process.  Many transfection reagents can achieve a transfection efficiency of >90% in common cell lines.  Other cell lines are hard to transfect, and require special reagents and/or techniques to achieve even a small population of transfected cells.

  12. How can I determine the efficiency of my transfection?

    Calculating transfection efficiency is very useful when optimizing transfection protocols.  Transfection efficiency can be performed using a GFP-expressing plasmid.  After transfection, cells are stained with propidium iodide and counted.  The propidium iodide provides a count of the total cells in the population, and the GFP-expressing cells provide a count of the number of cells transfected.  The transfection efficiency (%) can then be calculated by:(# GFP-expressing cells / total cell #) * 100

  13. How can I increase the efficiency of my transfection?

    Transfection efficiency is affected by many different things, including plasmid size and purity, media components present, transfection reagent selected, amount of DNA and transfection reagent used, cell density, etc.  Optimizing the protocol with respect to these concerns will allow you to achieve a higher transfection efficiency.  For many cell lines and transfection reagents, optimized protocols are already available.

  14. Can I transfect cells plated at low density?

    For most transfections, cells should be >70% confluency the day of transfection, and growing in mid-log phase.  Some transfection reagents are now designed to work with cells at low density, when required.

  15. Can antibiotics be present in the medium during transfection?

    We recommend that no antibiotics are present during transfection.  The process of transfection can make the cells somewhat more porous to allow for efficient DNA entry.  During this time, antibiotics will also enter the cells more easily and the cells may show increased cell death.  Wait until about 24 hours after transfection to resume the use of preventative antibiotics and/or start the use of selective antibiotics.

  16. What are the differences between the two Escort products?

    Each Escort transfection Reagent is a different lipid formulation.  These different formulations are more readily taken up by different cells, presumably by endocytosis.Escort III is a unique formulation of a proprietary polycationic lipid and a neutral, non-transfecting lipid.Escort IV is a a confidential lipid.

  17. Which Escort transfection reagent should I use for my application?

    Escort III is best for sensitive cells and primary cells, particularly PC-12 and Jurkat.Escort IV is excellent for mammalian cell lines, primary cells and insect cells.

  18. What is the difference between stable and transient transfection?

    When the DNA enters the nucleus of the cell, the plasmid is replicated by the cell machinery (transient transfection).  During this time, RNA is transcribed and protein translated until the plasmid DNA is lost after a few cell divisions.  This expression of the plasmid DNA, mRNA, and protein is transient (temporary).In some cases, the plasmid DNA is integrated into the host cell genome.  This is usually accompanied by forced expression using a selection antibiotic and sometimes a cloning step (to be sure all cells have the same integration site).  Once the DNA is stable, the cell line can be frozen and used to express protein for many years.  Clones may even be screened for those expressing the highest amount of protein.

  19. My question is not addressed here, how can I contact Technical Service for assistance?

    Ask a Scientist here.

Michael Povelones et al.
PLoS pathogens, 7(4), e1002023-e1002023 (2011-05-03)
Malaria threatens half the world's population and exacts a devastating human toll. The principal malaria vector in Africa, the mosquito Anopheles gambiae, encodes 24 members of a recently identified family of leucine-rich repeat proteins named LRIMs. Two members of this
H A Clark et al.
Analytical chemistry, 71(21), 4831-4836 (1999-11-24)
Spherical optical nanosensors, or PEBBLEs (probes encapsulated by biologically localized embedding), have been produced in sizes including 20 and 200 nm in diameter. These sensors are fabricated in a microemulsion and consist of fluorescent indicators entrapped in a polyacrylamide matrix.
Melissa D Jordan et al.
Chemical senses, 34(5), 383-394 (2009-03-19)
Moths recognize a wide range of volatile compounds, which they use to locate mates, food sources, and oviposition sites. These compounds are recognized by odorant receptors (OR) located within the dendritic membrane of sensory neurons that extend into the lymph
Zev Bryant et al.
Proceedings of the National Academy of Sciences of the United States of America, 104(3), 772-777 (2006-12-22)
Myosin VI supports movement toward the (-) end of actin filaments, despite sharing extensive sequence and structural homology with (+)-end-directed myosins. A class-specific stretch of amino acids inserted between the converter domain and the lever arm was proposed to provide
Manveen K Gupta et al.
Antioxidants & redox signaling, 8(5-6), 1081-1093 (2006-06-15)
Cardiac myocytes, upon exposure to increasing doses of norepinephrine (NE), transit from hypertrophic to apoptotic phenotype. Since reactive oxygen species (ROS) generation is attributed to both phenomena, the authors tested whether an elevation in intracellular ROS level causes such transition.

商品

Transfection is the introduction of DNA, RNA, or proteins into eukaryotic cells and is used in research to study and modulate gene expression. Thus, transfection techniques and protocols serve as an analytical tool that facilitates the characterization of genetic functions, protein synthesis, cell growth and development.

转染是将DNA、RNA或蛋白质引入真核细胞的过程,用于研究和调节基因表达。因此,转染技术和实验方案作为分析工具,有助于表征遗传功能、蛋白质合成、细胞生长和发育。

This brief webinar provides an overview of what transfection is and the methods that are used to introduce DNA or RNA into eukaryotic cells.

实验方案

The product bulletin providin detailed use protocol for easy DNA transfection.

Product manual provides detailed protocol for easy DNA transfection.

Our Universal Transfection Reagent is a unique formulation of a proprietary polymer blend used for transient and stable transfection of nucleic acids into various eukaryotic cell lines and hard-to-transfect primary cells. This is a fast and easy protocol is compatible with serum, serum-free medium and antibiotics.

Calcium phosphate transfection is a common method for the introduction of DNA into eukaryotic cells. This protocol can be optimized for use with a wide variety of cell types.

查看所有结果

相关内容

Browse our convenient transfection reagent selection guide to match the best reagent for your specific cell line and application needs.

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门