跳转至内容
Merck
CN

SAB3500069

Anti-SYPL2 antibody produced in rabbit

affinity isolated antibody, buffered aqueous solution

别名:

Anti-MG29, Anti-Mitsugumin 29, Anti-Synaptophysin-like protein 2

登录 查看组织和合同定价。

选择尺寸


关于此项目

NACRES:
NA.41
UNSPSC Code:
12352203
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助
技术服务
需要帮助?我们经验丰富的科学家团队随时乐意为您服务。
让我们为您提供帮助

产品名称

Anti-SYPL2 antibody produced in rabbit, affinity isolated antibody, buffered aqueous solution

biological source

rabbit

conjugate

unconjugated

antibody form

affinity isolated antibody

antibody product type

primary antibodies

clone

polyclonal

form

buffered aqueous solution

species reactivity

rat, human, mouse

technique(s)

immunofluorescence: suitable
immunohistochemistry: suitable
indirect ELISA: suitable
western blot: suitable

NCBI accession no.

UniProt accession no.

shipped in

dry ice

storage temp.

−20°C

target post-translational modification

unmodified

Quality Level

Gene Information

human ... SYPL2(284612)

Biochem/physiol Actions

Synaptophysin-like 2 (SYPL2) may be a Ca2+-dependent transporter involved in exocytosis. It has been shown to be expressed in activated astrocytes which are linked to senile plaques in individuals with Alzheimer′s disease. Thus, it has been speculated as a protein leading to enhanced neurodegeneration. SYPL2 has been linked to morbid obesity.

Disclaimer

Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.

Features and Benefits

Evaluate our antibodies with complete peace of mind. If the antibody does not perform in your application, we will issue a full credit or replacement antibody. Learn more.

General description

SYPL2, also known as Mitsugumin 29, was initially identified as a transmembrane protein from the triad junction in skeletal muscle that had significant homology with members of the synaptophysin family. SYPL2 is thought to participate in the excitation-contraction coupling process of skeletal muscle as SYPL2-null mice showed reduced muscle contractile force and altered triad junction structure and increased susceptibility to fatigue of the skeletal muscle. SYPL2 plays a critical role in muscle Ca2+ signaling by regulating the process of store-operated Ca2+ entry and interacts with ryanodine receptor (RyR), thereby influencing intracellular Ca2+ homeostasis through changes in the RyR/Ca2+ release function. Co-expression of SYPL2 and RyR in cultured cells leads to apoptotic cell death resulting from the depletion of Ca2+ from the intracellular stores. At least two isoforms of SYPL2 are known to exist. SYPL2 antibody will not cross-react with SYPL1.
Synaptophysin-like 2 (SYPL2) is part of the synaptophysin family and is localized to synaptic vesicles. It is expressed in the heart, brain and kidneys. The gene encoding this protein is localized on human chromosome 1.

Immunogen

SYPL2 antibody was raised against a 15 amino acid peptide near the carboxy terminus of human SYPL.

Other Notes

The action of this antibody can be blocked using blocking peptide SBP3500069.

Physical form

Supplied at approx. 1 mg/mL in phosphate buffered saline containing 0.02% sodium azide.

未找到合适的产品?  

试试我们的产品选型工具.

存储类别

10 - Combustible liquids

wgk

WGK 2

flash_point_f

Not applicable

flash_point_c

Not applicable

法规信息

常规特殊物品
此项目有

历史批次信息供参考:

分析证书(COA)

Lot/Batch Number

没有发现合适的版本?

如果您需要特殊版本,可通过批号或批次号查找具体证书。

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Mitsugumin 29 is transcriptionally induced in senile plaque-associated astrocytes.
Satoh K
Brain Research (2012)
Exome sequencing followed by genotyping suggests SYPL2 as a susceptibility gene for morbid obesity.
Jiao H
European Journal of Human Genetics (2015)
Elena Conte et al.
Frontiers in pharmacology, 15, 1393746-1393746 (2024-07-04)
Introduction: During aging, sarcopenia and decline in physiological processes lead to partial loss of muscle strength, atrophy, and increased fatigability. Muscle changes may be related to a reduced intake of essential amino acids playing a role in proteostasis. We have

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系客户支持