跳转至内容
Merck
CN

Shared strategies for β-lactam catabolism in the soil microbiome.

Nature chemical biology (2018-05-02)
Terence S Crofts, Bin Wang, Aaron Spivak, Tara A Gianoulis, Kevin J Forsberg, Molly K Gibson, Lauren A Johnsky, Stacey M Broomall, C Nicole Rosenzweig, Evan W Skowronski, Henry S Gibbons, Morten O A Sommer, Gautam Dantas
摘要

The soil microbiome can produce, resist, or degrade antibiotics and even catabolize them. While resistance genes are widely distributed in the soil, there is a dearth of knowledge concerning antibiotic catabolism. Here we describe a pathway for penicillin catabolism in four isolates. Genomic and transcriptomic sequencing revealed β-lactamase, amidase, and phenylacetic acid catabolon upregulation. Knocking out part of the phenylacetic acid catabolon or an apparent penicillin utilization operon (put) resulted in loss of penicillin catabolism in one isolate. A hydrolase from the put operon was found to degrade in vitro benzylpenicilloic acid, the β-lactamase penicillin product. To test the generality of this strategy, an Escherichia coli strain was engineered to co-express a β-lactamase and a penicillin amidase or the put operon, enabling it to grow using penicillin or benzylpenicilloic acid, respectively. Elucidation of additional pathways may allow bioremediation of antibiotic-contaminated soils and discovery of antibiotic-remodeling enzymes with industrial utility.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
青霉素G 钠盐, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Nα-苯甲酰-DL-精氨酸 4-基苯酰胺 盐酸盐, ≥98%
Sigma-Aldrich
青霉素 来源于蜡样芽胞杆菌, lyophilized powder, ≥1500.00 units/mg protein (using benzylpenicillin)
Sigma-Aldrich
M9,矿物盐, 5X, powder, minimal microbial growth medium
Sigma-Aldrich
4-硝基苯胺, ≥99%
Sigma-Aldrich
4-硝基乙酰苯胺, 98%
Sigma-Aldrich
苯乙酸, ≥99%, FCC, FG
Sigma-Aldrich
(+)-6-氨基青霉烷酸, 96%
Sigma-Aldrich
青霉素酰胺酶 来源于大肠杆菌, 5-10 units/mg protein
Sigma-Aldrich
L-谷氨酸 γ-(4-硝基苯胺), γ-glutamyl transpeptidase substrate
Sigma-Aldrich
6-Nitro-3-(phenylacetamido)benzoic acid, ≥98%