跳转至内容
Merck
CN
  • NEIL1 and NEIL2 DNA glycosylases protect neural crest development against mitochondrial oxidative stress.

NEIL1 and NEIL2 DNA glycosylases protect neural crest development against mitochondrial oxidative stress.

eLife (2019-10-01)
Dandan Han, Lars Schomacher, Katrin M Schüle, Medhavi Mallick, Michael U Musheev, Emil Karaulanov, Laura Krebs, Annika von Seggern, Christof Niehrs
摘要

Base excision repair (BER) functions not only in the maintenance of genomic integrity but also in active DNA demethylation and epigenetic gene regulation. This dual role raises the question if phenotypic abnormalities resulting from deficiency of BER factors are due to DNA damage or impaired DNA demethylation. Here we investigate the bifunctional DNA glycosylases/lyases NEIL1 and NEIL2, which act in repair of oxidative lesions and in epigenetic demethylation. Neil-deficiency in Xenopus embryos and differentiating mouse embryonic stem cells (mESCs) leads to a surprisingly restricted defect in cranial neural crest cell (cNCC) development. Neil-deficiency elicits an oxidative stress-induced TP53-dependent DNA damage response, which impairs early cNCC specification. Epistasis experiments with Tdg-deficient mESCs show no involvement of epigenetic DNA demethylation. Instead, Neil-deficiency results in oxidative damage specific to mitochondrial DNA, which triggers a TP53-mediated intrinsic apoptosis. Thus, NEIL1 and NEIL2 DNA glycosylases protect mitochondrial DNA against oxidative damage during neural crest differentiation.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
抗 α-微管蛋白单克隆抗体 小鼠抗, clone B-5-1-2, ascites fluid
Sigma-Aldrich
抗磷酸组蛋白H3(Ser10)抗体,有丝分裂标记, Upstate®, from rabbit
Sigma-Aldrich
绿脓菌素, from Pseudomonas aeruginosa, ≥98% (HPLC)
Sigma-Aldrich
吡菲他林-α, ≥95% (HPLC), powder