Merck
CN
  • Sodium-glucose cotransporter 2 inhibition suppresses HIF-1α-mediated metabolic switch from lipid oxidation to glycolysis in kidney tubule cells of diabetic mice.

Sodium-glucose cotransporter 2 inhibition suppresses HIF-1α-mediated metabolic switch from lipid oxidation to glycolysis in kidney tubule cells of diabetic mice.

Cell death & disease (2020-05-24)
Ting Cai, Qingqing Ke, Yi Fang, Ping Wen, Hanzhi Chen, Qi Yuan, Jing Luo, Yu Zhang, Qi Sun, Yunhui Lv, Ke Zen, Lei Jiang, Yang Zhou, Junwei Yang
摘要

Inhibition of sodium-glucose cotransporter 2 (SGLT2) in the proximal tubule of the kidney has emerged as an effective antihyperglycemic treatment. The potential protective role of SGLT2 inhibition on diabetic kidney disease (DKD) and underlying mechanism, however, remains unknown. In this study, metabolic switch was examined using kidney samples from human with diabetes and streptozocin (STZ)-induced experimental mouse model of diabetes treated with or without SGLT2 inhibitor dapagliflozin. Results were further validated using primarily cultured proximal tubule epithelial cells. We found that DKD development and progression to renal fibrosis entailed profound changes in proximal tubule metabolism, characterized by a switch from fatty acid utilization to glycolysis and lipid accumulation, which is associated with the increased expression of HIF-1α. Diabetes-induced tubulointerstitial damage, such as macrophage infiltration and fibrosis, was significantly improved by dapagliflozin. Consistent with the effects of these beneficial interventions, the metabolic disorder was almost completely eliminated by dapagliflozin. The increased level of HIF-1α in renal proximal tubule was nearly nullified by dapagliflozin. Moreover, dapagliflozin protects against glucose-induced metabolic shift in PTCs via inhibiting HIF-1α. It suggests that SGLT2 inhibition is efficient in rectifying the metabolic disorder and may be a novel prevention and treatment strategy for kidney tubule in DKD.

材料
货号
品牌
产品描述

Sigma-Aldrich
D -(+)-葡萄糖, ≥99.5% (GC)
Sigma-Aldrich
链脲菌素, ≥75% α-anomer basis, ≥98% (HPLC), powder
Sigma-Aldrich
D -甘露醇, ≥98% (GC)
Sigma-Aldrich
油红O, certified by the Biological Stain Commission
Sigma-Aldrich
抗-α微管蛋白抗体,小鼠单克隆抗体, clone B-5-1-2, purified from hybridoma cell culture
Sigma-Aldrich
双(2-氧代-3-噁唑烷基)次磷酰氯, ≥97.0% (AT)
Sigma-Aldrich
氢化可的松-1α,2α-d2, 98 atom % D