- Tea catechins and flavonoids from the leaves of Camellia sinensis inhibit yeast alcohol dehydrogenase.
Tea catechins and flavonoids from the leaves of Camellia sinensis inhibit yeast alcohol dehydrogenase.
Four new quercetin acylglycosides, designated camelliquercetisides A-D, quercetin 3-O-[α-L-arabinopyranosyl(1→3)][2-O″-(E)-p-coumaroyl][β-D-glucopyranosyl(1→3)-α-L-rhamnopyranosyl(1→6)]-β-D-glucoside (17), quercetin 3-O-[2-O″-(E)-p-coumaroyl][β-D-glucopyranosyl(1→3)-α-L-rhamnopyranosyl(1→6)]-β-D-glucoside (18), quercetin 3-O-[α-L-arabinopyranosyl(1→3)][2-O″-(E)-p-coumaroyl][α-L-rhamnopyranosyl(1→6)]-β-d-glucoside (19), and quercetin 3-O-[2-O″-(E)-p-coumaroyl][α-L-rhamnopyranosyl(1→6)]-β-D-glucoside (20), together with caffeine and known catechins, and flavonoids (1-16) were isolated from the leaves of Camellia sinensis. Their structures were determined by spectroscopic (1D and 2D NMR, IR, and HR-TOF-MS) and chemical methods. The catechins and flavonoidal glycosides exhibited yeast alcohol dehydrogenase (ADH) inhibitory activities in the range of IC(50) 8.0-70.3μM, and radical scavenging activities in the range of IC(50) 1.5-43.8 μM, measured by using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical.