跳转至内容
Merck
CN
  • Analysis of the circRNA and T-UCR populations identifies convergent pathways in mouse and human models of Rett syndrome.

Analysis of the circRNA and T-UCR populations identifies convergent pathways in mouse and human models of Rett syndrome.

Molecular therapy. Nucleic acids (2022-01-18)
Edilene Siqueira, Aida Obiols-Guardia, Olga C Jorge-Torres, Cristina Oliveira-Mateos, Marta Soler, Deepthi Ramesh-Kumar, Fernando Setién, Daniëlle van Rossum, Ainhoa Pascual-Alonso, Clara Xiol, Cristina Ivan, Masayoshi Shimizu, Judith Armstrong, George A Calin, R Jeroen Pasterkamp, Manel Esteller, Sonia Guil
摘要

Noncoding RNAs play regulatory roles in physiopathology, but their involvement in neurodevelopmental diseases is poorly understood. Rett syndrome is a severe, progressive neurodevelopmental disorder linked to loss-of-function mutations of the MeCP2 gene for which no cure is yet available. Analysis of the noncoding RNA profile corresponding to the brain-abundant circular RNA (circRNA) and transcribed-ultraconserved region (T-UCR) populations in a mouse model of the disease reveals widespread dysregulation and enrichment in glutamatergic excitatory signaling and microtubule cytoskeleton pathways of the corresponding host genes. Proteomic analysis of hippocampal samples from affected individuals confirms abnormal levels of several cytoskeleton-related proteins together with key alterations in neurotransmission. Importantly, the glutamate receptor GRIA3 gene displays altered biogenesis in affected individuals and in vitro human cells and is influenced by expression of two ultraconserved RNAs. We also describe post-transcriptional regulation of SIRT2 by circRNAs, which modulates acetylation and total protein levels of GluR-1. As a consequence, both regulatory mechanisms converge on the biogenesis of AMPA receptors, with an effect on neuronal differentiation. In both cases, the noncoding RNAs antagonize MeCP2-directed regulation. Our findings indicate that noncoding transcripts may contribute to key alterations in Rett syndrome and are not only useful tools for revealing dysregulated processes but also molecules of biomarker value.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
抗-兔IgG(全分子)-过氧化物酶 山羊抗, affinity isolated antibody
Sigma-Aldrich
抗-β-肌动蛋白−过氧化物酶抗体,小鼠单克隆 小鼠抗, clone AC-15, purified from hybridoma cell culture
Sigma-Aldrich
乙酰化微管蛋白单克隆抗体 小鼠抗, clone 6-11B-1, ascites fluid
Sigma-Aldrich
EGF 人, Animal-component free, recombinant, expressed in E. coli, ≥98% (SDS-PAGE), ≥98% (HPLC), suitable for cell culture
Roche
RNase,不含DNase, from bovine pancreas
Sigma-Aldrich
ReNcell VM人神经祖细胞系, ReNcell VM is an immortalized human neural progenitor cell line with the ability to readily differentiate into neurons & glial cells.
Sigma-Aldrich
IgG 来源于兔血清, reagent grade, ≥95% (SDS-PAGE), essentially salt-free, lyophilized powder
Sigma-Aldrich
单克隆抗 β-微管蛋白 III 小鼠抗, clone SDL.3D10, ascites fluid
Sigma-Aldrich
AGK2, ≥97% (HPLC), powder
Sigma-Aldrich
Anti-MeCP2 antibody produced in rabbit, ~0.6 mg/mL, affinity isolated antibody, buffered aqueous solution