Merck
CN
  • β-arrestin mediates communication between plasma membrane and intracellular GPCRs to regulate signaling.

β-arrestin mediates communication between plasma membrane and intracellular GPCRs to regulate signaling.

Communications biology (2020-12-20)
Maxwell S DeNies, Alan V Smrcka, Santiago Schnell, Allen P Liu
摘要

It has become increasingly apparent that G protein-coupled receptor (GPCR) localization is a master regulator of cell signaling. However, the molecular mechanisms involved in this process are not well understood. To date, observations of intracellular GPCR activation can be organized into two categories: a dependence on OCT3 cationic channel-permeable ligands or the necessity of endocytic trafficking. Using CXC chemokine receptor 4 (CXCR4) as a model, we identified a third mechanism of intracellular GPCR signaling. We show that independent of membrane permeable ligands and endocytosis, upon stimulation, plasma membrane and internal pools of CXCR4 are post-translationally modified and collectively regulate EGR1 transcription. We found that β-arrestin-1 (arrestin 2) is necessary to mediate communication between plasma membrane and internal pools of CXCR4. Notably, these observations may explain that while CXCR4 overexpression is highly correlated with cancer metastasis and mortality, plasma membrane localization is not. Together these data support a model where a small initial pool of plasma membrane-localized GPCRs are capable of activating internal receptor-dependent signaling events.

材料
货号
品牌
产品描述

Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
发动蛋白抑制剂I ,Dynasore, The Dynamin Inhibitor I, Dynasore, also referenced under CAS 304448-55-3, controls the biological activity of Dynamin. This small molecule/inhibitor is primarily used for Membrane applications.