- The selective serotonin reuptake inhibitor paroxetine decreases breakpoint of rats engaging in a progressive ratio licking task for sucrose and quinine solutions.
The selective serotonin reuptake inhibitor paroxetine decreases breakpoint of rats engaging in a progressive ratio licking task for sucrose and quinine solutions.
Increased serotonergic activity has been shown to reduce motivation to ingest, which may involve, in part, gustatory processes. Here, we examined the effect of paroxetine, a selective serotonin reuptake inhibitor, on appetitive responding for a preferred and an avoided taste solution using a progressive ratio (PR) task in which licking was employed as the operant. Male Sprague-Dawley rats (n = 8/taste stimulus) were trained to respond for a concentration series of sucrose or quinine on fixed and PR schedules of reinforcement. Performance for sucrose was assessed while the rats were partially food- and water-restricted and nondeprived, and performance for water and quinine was assessed while the rats were water-deprived. Then, the rats were injected with vehicle (10% dimethyl sulfoxide, 1mL/kg intraperitoneal [ip], -1h) or paroxetine (5mg/kg), and their responding on a PR schedule for sucrose measured when the rats were nondeprived or for water and quinine when the rats were water-deprived. Paroxetine decreased breakpoint, which was defined as the number of operant (e.g., dry) licks in the final reinforced ratio, for water, quinine, and sucrose. This demonstrates that a general systemic increase in serotonergic activity decreases the appetitive-based responses to both preferred and nonpreferred fluids under different deprivation states.