跳转至内容
Merck
CN
  • Rapid and simultaneous determination of sulfonate ester genotoxic impurities in drug substance by liquid chromatography coupled to tandem mass spectrometry: comparison of different ionization modes.

Rapid and simultaneous determination of sulfonate ester genotoxic impurities in drug substance by liquid chromatography coupled to tandem mass spectrometry: comparison of different ionization modes.

Journal of chromatography. A (2014-07-06)
Tian Guo, Yuanyuan Shi, Li Zheng, Feng Feng, Feng Zheng, Wenyuan Liu
摘要

Two ionization techniques for liquid chromatography-mass spectrometry (LC-MS) determination of sulfonate ester potentially genotoxic impurities (PGIs) were evaluated. Twelve PGIs including methyl, ethyl, propyl and isopropyl esters of methanesulfonate, benzenesulfonate and p-toluenesulfonate were studied in this research. Electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) sources were compared in terms of performance and quality parameters for detection of the twelve PGIs. Their mass spectra obtained by APCI and ESI were very different in both fragment ions and relative abundances. In APCI negative ion mode the twelve sulfonate esters showed their stable precursor ions of [M-alkyl](-), which readily yielded product ions of [M-alkyl-CH3](-) (for aliphatic sulfonate esters) or [M-alkyl-SO2](-) (for aromatic sulfonate esters) with collision-induced dissociation (CID) applied; and working in selected reaction monitoring (SRM) mode has allowed limits of detection to be decreased. In the case of ESI ionization, these compounds showed their precursor ions [M+H](+), but their abundance was easily competed by formation of ions [M+NH4](+) and/or [M+Na](+), which led to poor analytical sensitivity and reproducibility. Although mobile phase additives could enhance the responses of adduct ions like [M+NH4](+) and [M+Na](+), no improvement was obtained when using SRM mode. Twelve sulfonate esters were systematically compared and APCI was shown to be a better ionization technique for rapid and sensitive determination of these PGIs. Performance of the developed approach for rapid determination of 12 PGIs was also evaluated. Quality parameters were established and good precision (relative standard deviations <8%) and very low limits (2-4ng/mL) of detection were obtained, mainly when using APCI in SRM mode.

材料
Product Number
品牌
产品描述

Sigma-Aldrich
乙腈, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
甲醇, suitable for HPLC, ≥99.9%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
甲醇, HPLC Plus, ≥99.9%
Sigma-Aldrich
乙腈, ACS reagent, ≥99.5%
Sigma-Aldrich
乙腈, anhydrous, 99.8%
Sigma-Aldrich
甲醇, anhydrous, 99.8%
Sigma-Aldrich
乙腈, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
乙腈, ≥99.9% (GC)
Sigma-Aldrich
甲醇, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
甲醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
甲醇, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
乙腈, suitable for HPLC-GC, ≥99.8% (GC)
USP
木精, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
甲醇, BioReagent, ≥99.93%
Supelco
甲醇, analytical standard
Supelco
甲醇, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
对甲苯磺酸甲酯, 98%
Sigma-Aldrich
乙腈, biotech. grade, ≥99.93%
Sigma-Aldrich
乙腈, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
乙腈, suitable for DNA synthesis, ≥99.9% (GC)
Supelco
乙腈(纯品), Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
乙腈, analytical standard
Sigma-Aldrich
乙腈, ReagentPlus®, 99%
Sigma-Aldrich
甲醇, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
乙腈, ≥99.5% (GC)