Merck
CN
  • Intramolecular interactions between the Dbl homology (DH) domain and the carboxyl-terminal region of myosin II-interacting guanine nucleotide exchange factor (MyoGEF) act as an autoinhibitory mechanism for the regulation of MyoGEF functions.

Intramolecular interactions between the Dbl homology (DH) domain and the carboxyl-terminal region of myosin II-interacting guanine nucleotide exchange factor (MyoGEF) act as an autoinhibitory mechanism for the regulation of MyoGEF functions.

The Journal of biological chemistry (2014-10-23)
Di Wu, Meng Jiao, Shicheng Zu, Christopher C Sollecito, Kevin Jimenez-Cowell, Alexander J Mold, Ryan M Kennedy, Qize Wei
摘要

We have reported previously that nonmuscle myosin II-interacting guanine nucleotide exchange factor (MyoGEF) plays an important role in the regulation of cell migration and cytokinesis. Like many other guanine nucleotide exchange factors (GEFs), MyoGEF contains a Dbl homology (DH) domain and a pleckstrin homology domain. In this study, we provide evidence demonstrating that intramolecular interactions between the DH domain (residues 162-351) and the carboxyl-terminal region (501-790) of MyoGEF can inhibit MyoGEF functions. In vitro and in vivo pulldown assays showed that the carboxyl-terminal region (residues 501-790) of MyoGEF could interact with the DH domain but not with the pleckstrin homology domain. Expression of a MyoGEF carboxyl-terminal fragment (residues 501-790) decreased RhoA activation and suppressed actin filament formation in MDA-MB-231 breast cancer cells. Additionally, Matrigel invasion assays showed that exogenous expression of the MyoGEF carboxyl-terminal region decreased the invasion activity of MDA-MB-231 cells. Moreover, coimmunoprecipitation assays showed that phosphorylation of the MyoGEF carboxyl-terminal region by aurora B kinase interfered with the intramolecular interactions of MyoGEF. Furthermore, expression of the MyoGEF carboxyl-terminal region interfered with RhoA localization during cytokinesis and led to an increase in multinucleation. Together, our findings suggest that binding of the carboxyl-terminal region of MyoGEF to its DH domain acts as an autoinhibitory mechanism for the regulation of MyoGEF activation.

材料
货号
品牌
产品描述

Sigma-Aldrich
胶原蛋白 来源于人类胎盘, Bornstein and Traub Type IV, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
I型胶原蛋白 溶液 来源于大鼠尾, BioReagent, suitable for cell culture, sterile-filtered
Sigma-Aldrich
胶原蛋白 来源于人类胎盘, Bornstein and Traub Type IV, powder
Sigma-Aldrich
胶原蛋白 来源于大鼠尾, Bornstein and Traub Type I, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
胶原蛋白 来源于小牛皮, Bornstein and Traub Type I, (0.1% solution in 0.1 M acetic acid), aseptically processed, BioReagent, suitable for cell culture
Sigma-Aldrich
胶原蛋白IV型 来源于人类细胞培养基, Bornstein and Traub Type IV, 0.3 mg/mL, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
胶原蛋白 来源于人类胎盘, Bornstein and Traub Type I (Sigma Type VIII), powder
Sigma-Aldrich
胶原 人, Bornstein and Traub Type I, acid soluble, powder, ~95% (SDS-PAGE)
Sigma-Aldrich
胶原蛋白 来源于人类胎盘, Bornstein and Traub Type V (Sigma Type IX), powder
Sigma-Aldrich
胶原蛋白 来源于人类胎盘, Bornstein and Traub Type III (Sigma Type X), powder
Sigma-Aldrich
胶原蛋白 来源于 Engelbreth-Holm-Swarm 小鼠肉瘤基底膜, Type IV (Miller), lyophilized powder, BioReagent, suitable for cell culture
Sigma-Aldrich
胶原蛋白 来源于人类胎盘, Bornstein and Traub Type IV, solution, suitable for cell culture, High Performance
Sigma-Aldrich
胶原 来源于人类胎盘, Bornstein and Traub Type IV, powder