Merck
CN
  • Trace analysis of herbicides in wastewaters by a dispersive liquid-liquid microextraction approach and liquid chromatography with quadrupole linear ion trap mass spectrometry: evaluation of green parameters.

Trace analysis of herbicides in wastewaters by a dispersive liquid-liquid microextraction approach and liquid chromatography with quadrupole linear ion trap mass spectrometry: evaluation of green parameters.

Journal of separation science (2014-04-02)
Maria del Mar Parrilla Vázquez, Maria Martínez Galera, Piedad Parrilla Vázquez, Ana Uclés Moreno
摘要

An analytical method for determining phenylureas (monuron, isoproturon, diuron, linuron and neburon) and propanil herbicides in wastewater has been developed and validated, and the most significant parameters were compared with the corresponding ones found in the literature, thus showing the method performance. The method involves pre-concentration by a simple, rapid, sensitive and low environmental toxicity temperature-controlled ionic liquid dispersive liquid-liquid microextraction procedure. The herbicides were identified and determined by liquid chromatography with a hybrid triple quadrupole linear ion trap mass spectrometer. Data acquisition in selected-reaction monitoring mode allowed the simultaneous identification and quantification of the analytes using two transitions. The information dependent acquisition scan was performed to carry out the identification of those analytes whose second transition was present at low intensity, also providing extra confirmation for the other analytes. Limits of quantification were in the range 1.0-5.0 ng/L. Good recoveries (95-103%) were obtained for the extraction of the target analytes in wastewater samples. The methodology developed was applied to analyze effluent wastewater samples from a wastewater treatment plant located in an agricultural zone of Almería (Spain) and the results indicated the presence of diuron at mean concentration levels of 73.5 ng/L.

材料
货号
品牌
产品描述

Sigma-Aldrich
乙腈, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
甲醇, suitable for HPLC, ≥99.9%
Sigma-Aldrich
乙腈, anhydrous, 99.8%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
甲醇, anhydrous, 99.8%
Sigma-Aldrich
甲酸, reagent grade, ≥95%
Sigma-Aldrich
甲醇, HPLC Plus, ≥99.9%
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
甲酸, ACS reagent, ≥96%
Sigma-Aldrich
乙腈, ACS reagent, ≥99.5%
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
乙腈, for HPLC, for UV, ≥99.9% (GC)
Sigma-Aldrich
乙腈, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
甲醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Supelco
甲醇, Pharmaceutical Secondary Standard; Certified Reference Material
USP
木精, United States Pharmacopeia (USP) Reference Standard
Supelco
甲醇, analytical standard
Sigma-Aldrich
甲醇, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
甲醇, ACS spectrophotometric grade, ≥99.9%
Supelco
乙腈, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
乙腈, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
1-丁基-3-甲基咪唑六氟磷酸盐, ≥97.0% (HPLC)
Sigma-Aldrich
甲醇, BioReagent, ≥99.93%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
甲醇, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
甲酸, ≥95%, FCC, FG
Supelco
乙腈, analytical standard
Sigma-Aldrich
甲酸 溶液, BioUltra, 1.0 M in H2O
Sigma-Aldrich
乙腈, biotech. grade, ≥99.93%
Sigma-Aldrich
乙腈, ReagentPlus®, 99%