跳转至内容
Merck
CN
  • A sensitive method for digoxin determination using formate-adduct ion based on the effect of ionization enhancement in liquid chromatograph-mass spectrometer.

A sensitive method for digoxin determination using formate-adduct ion based on the effect of ionization enhancement in liquid chromatograph-mass spectrometer.

Journal of chromatography. B, Analytical technologies in the biomedical and life sciences (2014-12-30)
Xia Li, Yu Wang, Qingyuan Zhou, Yunqiu Yu, Lihong Chen, Jie Zheng
摘要

A sensitive and rapid method based on formate-adduct ion detection was developed and fully validated for digoxin determination in rat plasma. For LC/MS/MS detection with formate-adducts as precursor ions, transitions of m/z 825.5→779.9 for digoxin and m/z 809.5→763.4 for the internal standard (digitoxin) were monitored in negative mode. To investigate the impact of formic acid on the mass response and method sensitivity, a formic acid concentration range of 0-0.1% (0, 0.0005%, 0.002%, 0.01%, 0.1%, v/v) was evaluated. A concentration of 0.002% gave the highest sensitivity, which was 16- to 18-fold higher than deprotonated ions, and was designated as the contribution giving the strongest ionization enhancement and adduction. A number of parameters were then varied in order to optimize the method, and a limit of quantitation (LOQ) at 0.2 ng/mL was reached with an injection volume of 5 μL, a total run time of 3 min, and 0.1 mL of rat plasma. A calibration curve was plotted over the range 0.2-50 ng/mL (R(2)=0.9998), and the method was successfully applied to study pharmacokinetics in rat following a single oral administration of digoxin (0.05 mg/kg). Four additional steroid saponins (digitoxin, deslanoside, ginsenoside Rg1 and Rb1) were investigated to assess the impact of formic acid on the mass response of steroid saponins. Compounds with a conjugated lactonic ring in their structures such as digoxin, digitoxin and deslanoside tended to form stable formate-adduct ions more easily. The LC/MS/MS method developed here is therefore well suited for the quantification of steroid saponins that are difficult to deprotonate using other MS approaches.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
乙腈, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
乙腈, ACS reagent, ≥99.5%
Sigma-Aldrich
乙腈, anhydrous, 99.8%
Supelco
甲酸铵, eluent additive for LC-MS, LiChropur, ≥99.0%
Sigma-Aldrich
甲酸铵, reagent grade, 97%
Sigma-Aldrich
乙腈, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
乙腈, ≥99.9% (GC)
Sigma-Aldrich
甲酸铵, ≥99.995% trace metals basis
Sigma-Aldrich
甲酸铵 溶液, BioUltra, 10 M in H2O
Sigma-Aldrich
乙腈, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
甲酸铵, BioUltra, ≥99.0% (calc. based on dry substance, NT)
Sigma-Aldrich
乙腈, biotech. grade, ≥99.93%
Sigma-Aldrich
乙腈, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
乙腈, suitable for DNA synthesis, ≥99.9% (GC)
Supelco
乙腈(纯品), Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
乙腈, analytical standard
Supelco
地高辛, analytical standard
Supelco
甲酸铵 溶液, 10 mM in H2O, suitable for HPLC
Sigma-Aldrich
乙腈, ReagentPlus®, 99%
Sigma-Aldrich
乙腈, ≥99.5% (GC)
USP
地高辛, United States Pharmacopeia (USP) Reference Standard
USP
二类残留溶剂 - 甲醇, United States Pharmacopeia (USP) Reference Standard
Supelco
残留溶剂标准品-乙腈(DMSO溶液), Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
乙腈
地高辛, European Pharmacopoeia (EP) Reference Standard
地高辛, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
乙腈, Preparateur, ≥99.9% (GC), One-time steel-plastic (SP) drum