跳转至内容
Merck
CN
  • Hypertension and hyperglycemia synergize to cause incipient renal tubular alterations resulting in increased NGAL urinary excretion in rats.

Hypertension and hyperglycemia synergize to cause incipient renal tubular alterations resulting in increased NGAL urinary excretion in rats.

PloS one (2014-08-26)
Ana M Blázquez-Medela, Omar García-Sánchez, Víctor Blanco-Gozalo, Yaremi Quiros, María J Montero, Carlos Martínez-Salgado, José M López-Novoa, Francisco J López-Hernández
摘要

Hypertension and diabetes are the two leading causes of chronic kidney disease (CKD) eventually leading to end stage renal disease (ESRD) and the need of renal replacement therapy. Mortality among CKD and ESRD patients is high, mostly due to cardiovascular events. New early markers of risk are necessary to better anticipate the course of the disease, to detect the renal affection of additive risk factors, and to appropriately handle patients in a pre-emptive and personalized manner. Renal function and NGAL urinary excretion was monitored in rats with spontaneous (SHR) or L-NAME induced hypertension rendered hyperglycemic (or not as controls). Combination of hypertension and hyperglycemia (but not each of these factors independently) causes an increased urinary excretion of neutrophil gelatinase-associated lipocalin (NGAL) in the rat, in the absence of signs of renal damage. Increased NGAL excretion is observed in diabetic animals with two independent models of hypertension. Elevated urinary NGAL results from a specific alteration in its tubular handling, rather than from an increase in its renal expression. In fact, when kidneys of hyperglycaemic-hypertensive rats are perfused in situ with Krebs-dextran solution containing exogenous NGAL, they excrete more NGAL in the urine than hypertensive rats. We also show that albuminuria is not capable of detecting the additive effect posed by the coexistence of these two risk factors. Our results suggest that accumulation of hypertension and hyperglycemia induces an incipient and quite specific alteration in the tubular handling of NGAL resulting in its increased urinary excretion.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
氯化钠, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
尿素, powder, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
氯化钙 溶液, BioUltra, Molecular Biology, ~1 M in H2O
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
尿素, ACS reagent, 99.0-100.5%
Sigma-Aldrich
氯化钙, anhydrous, BioReagent, suitable for insect cell culture, suitable for plant cell culture, ≥96.0%
Sigma-Aldrich
氯化钠 溶液, 5 M
Supelco
尿素, 8 M (after reconstitution with 16 mL high purity water)
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
尿素 溶液, BioUltra, ~8 M in H2O
Sigma-Aldrich
尿素, ReagentPlus®, ≥99.5%, pellets
Sigma-Aldrich
尿素, BioUltra, Molecular Biology, 99% (T)
Sigma-Aldrich
氯化钠, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
尿素, BioXtra, pH 7.5-9.5 (20 °C, 5 M in H2O)
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
氯化钠 溶液, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
氯化钙, powder, 99.99% trace metals basis
Supelco
氯化钠, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
氯化钠, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
氯化钙
Sigma-Aldrich
尿素, suitable for electrophoresis
Sigma-Aldrich
尿素, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%, 99.0-101.0% (calc. on dry substance)
Sigma-Aldrich
氯化钙, AnhydroBeads, −10 mesh, ≥99.9% trace metals basis
Supelco
尿素, analytical standard
Sigma-Aldrich
氯化钠 溶液, 0.85%
Sigma-Aldrich
尿素, meets USP testing specifications