跳转至内容
Merck
CN
  • Mass spectrometry based identification of geometric isomers during metabolic stability study of a new cytotoxic sulfonamide derivatives supported by quantitative structure-retention relationships.

Mass spectrometry based identification of geometric isomers during metabolic stability study of a new cytotoxic sulfonamide derivatives supported by quantitative structure-retention relationships.

PloS one (2014-06-04)
Mariusz Belka, Weronika Hewelt-Belka, Jarosław Sławiński, Tomasz Bączek
摘要

A set of 15 new sulphonamide derivatives, presenting antitumor activity have been subjected to a metabolic stability study. The results showed that besides products of biotransformation, some additional peaks occurred in chromatograms. Tandem mass spectrometry revealed the same mass and fragmentation pathway, suggesting that geometric isomerization occurred. Thus, to support this hypothesis, quantitative structure-retention relationships were applied. Human liver microsomes were used as an in vitro model of metabolism. The biotransformation reactions were tracked by liquid chromatography assay and additionally, fragmentation mass spectra were recorded. In silico molecular modeling at a semi-empirical level was conducted as a starting point for molecular descriptor calculations. A quantitative structure-retention relationship model was built applying multiple linear regression based on selected three-dimensional descriptors. The studied compounds revealed high metabolic stability, with a tendency to form hydroxylated biotransformation products. However, significant chemical instability in conditions simulating human body fluids was noticed. According to literature and MS data geometrical isomerization was suggested. The developed in sillico model was able to describe the relationship between the geometry of isomer pairs and their chromatographic retention properties, thus it supported the hypothesis that the observed pairs of peaks are most likely geometric isomers. However, extensive structural investigations are needed to fully identify isomers' geometry. An effort to describe MS fragmentation pathways of novel chemical structures is often not enough to propose structures of potent metabolites and products of other chemical reactions that can be observed in compound solutions at early drug discovery studies. The results indicate that the relatively non-expensive and not time- and labor-consuming in sillico approach could be a good supportive tool assisting the identification of cis-trans isomers based on retention data. This methodology can be helpful during the structural identification of biotransformation and degradation products of new chemical entities--potential new drugs.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
乙腈, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
甲醇, suitable for HPLC, ≥99.9%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
甲醇, HPLC Plus, ≥99.9%
Sigma-Aldrich
乙腈, ACS reagent, ≥99.5%
Sigma-Aldrich
乙腈, anhydrous, 99.8%
Sigma-Aldrich
甲醇, anhydrous, 99.8%
Sigma-Aldrich
乙腈, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
乙腈, ≥99.9% (GC)
Sigma-Aldrich
甲醇, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
甲醇, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
甲醇, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
甲醇, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
乙腈, suitable for HPLC-GC, ≥99.8% (GC)
USP
木精, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
甲醇, BioReagent, ≥99.93%
Supelco
甲醇, analytical standard
Supelco
甲醇, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
乙腈, biotech. grade, ≥99.93%
Sigma-Aldrich
乙腈, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
甲醇, ACS reagent, ≥99.8%
Sigma-Aldrich
乙腈, suitable for DNA synthesis, ≥99.9% (GC)
Supelco
乙腈(纯品), Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
乙腈, analytical standard
Sigma-Aldrich
乙腈, ReagentPlus®, 99%
Sigma-Aldrich
甲醇, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
乙腈, ≥99.5% (GC)
USP
二类残留溶剂 - 甲醇, United States Pharmacopeia (USP) Reference Standard