Merck
CN
  • Dopaminergic control of the globus pallidus through activation of D2 receptors and its impact on the electrical activity of subthalamic nucleus and substantia nigra reticulata neurons.

Dopaminergic control of the globus pallidus through activation of D2 receptors and its impact on the electrical activity of subthalamic nucleus and substantia nigra reticulata neurons.

PloS one (2015-03-06)
Omar Mamad, Claire Delaville, Wail Benjelloun, Abdelhamid Benazzouz
摘要

The globus pallidus (GP) receives dopaminergic afferents from the pars compacta of substantia nigra and several studies suggested that dopamine exerts its action in the GP through presynaptic D2 receptors (D2Rs). However, the impact of dopamine in GP on the pallido-subthalamic and pallido-nigral neurotransmission is not known. Here, we investigated the role of dopamine, through activation of D2Rs, in the modulation of GP neuronal activity and its impact on the electrical activity of subthalamic nucleus (STN) and substantia nigra reticulata (SNr) neurons. Extracellular recordings combined with local intracerebral microinjection of drugs were done in male Sprague-Dawley rats under urethane anesthesia. We showed that dopamine, when injected locally, increased the firing rate of the majority of neurons in the GP. This increase of the firing rate was mimicked by quinpirole, a D2R agonist, and prevented by sulpiride, a D2R antagonist. In parallel, the injection of dopamine, as well as quinpirole, in the GP reduced the firing rate of majority of STN and SNr neurons. However, neither dopamine nor quinpirole changed the tonic discharge pattern of GP, STN and SNr neurons. Our results are the first to demonstrate that dopamine through activation of D2Rs located in the GP plays an important role in the modulation of GP-STN and GP-SNr neurotransmission and consequently controls STN and SNr neuronal firing. Moreover, we provide evidence that dopamine modulate the firing rate but not the pattern of GP neurons, which in turn control the firing rate, but not the pattern of STN and SNr neurons.

材料
货号
品牌
产品描述

Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 5 M
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
SAFC
氯化钠 溶液, 5 M
Supelco
氯化钠, reference material for titrimetry, certified by BAM, ≥99.5%
Supelco
氯化钠, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
氯化钠 溶液, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
氯化钠, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
氯化钠 溶液, 0.85%
Sigma-Aldrich
氯化钠, tested according to Ph. Eur.
Sigma-Aldrich
氯化钠, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
氯化钠, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
氯化钠, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
氯化钠, tablet
Sigma-Aldrich
氯化钠-35Cl, 99 atom % 35Cl
Sigma-Aldrich
氯化钠, Vetec, reagent grade, 99%