跳转至内容
Merck
CN
  • Burkholderia pseudomallei type III secretion system cluster 3 ATPase BsaS, a chemotherapeutic target for small-molecule ATPase inhibitors.

Burkholderia pseudomallei type III secretion system cluster 3 ATPase BsaS, a chemotherapeutic target for small-molecule ATPase inhibitors.

Infection and immunity (2015-01-22)
Lan Gong, Shu-Chin Lai, Puthayalai Treerat, Mark Prescott, Ben Adler, John D Boyce, Rodney J Devenish
摘要

Melioidosis is an infectious disease of high mortality for humans and other animal species; it is prevalent in tropical regions worldwide. The pathogenesis of melioidosis depends on the ability of its causative agent, the Gram-negative bacterium Burkholderia pseudomallei, to enter and survive in host cells. B. pseudomallei can escape from the phagosome into the cytosol of phagocytic cells where it replicates and acquires actin-mediated motility, avoiding killing by the autophagy-dependent process, LC3 (microtubule-associated protein light chain 3)-associated phagocytosis (LAP). The type III secretion system cluster 3 (TTSS3) facilitates bacterial escape from phagosomes, although the mechanism has not been fully elucidated. Given the recent identification of small-molecule inhibitors of the TTSS ATPase, we sought to determine the potential of the predicted TTSS3 ATPase, encoded by bsaS, as a target for chemotherapeutic treatment of infection. A B. pseudomallei bsaS deletion mutant was generated and used as a control against which to assess the effect of inhibitor treatment. Infection of RAW 264.7 cells with wild-type bacteria and subsequent treatment with the ATPase inhibitor compound 939 resulted in reduced intracellular bacterial survival, reduced escape from phagosomes, and increased colocalization with both LC3 and the lysosomal marker LAMP1 (lysosome-associated membrane protein 1). These changes were similar to those observed for infection of RAW 264.7 cells with the bsaS deletion mutant. We propose that treatment with the ATPase inhibitor compound 939 decreased intracellular bacterial survival through a reduced ability of bacteria to escape from phagosomes and increased killing via LAP. Therefore, small-molecule inhibitors of the TTSS3 ATPase have potential as therapeutic treatments against melioidosis.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
十二烷基硫酸钠, BioReagent, suitable for electrophoresis, Molecular Biology, ≥98.5% (GC)
Sigma-Aldrich
十二烷基硫酸钠, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
十二烷基硫酸钠, ACS reagent, ≥99.0%
Sigma-Aldrich
十二烷基硫酸钠 溶液, BioUltra, Molecular Biology, 10% in H2O
Sigma-Aldrich
十二烷基硫酸钠, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
十二烷基硫酸钠, BioUltra, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
十二烷基硫酸钠 溶液, BioUltra, 20% in H2O
Supelco
十二烷基硫酸钠, dust-free pellets, suitable for electrophoresis, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
四环素, 98.0-102.0% (HPLC)
Supelco
十二烷基硫酸钠, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
十二烷基硫酸钠, BioXtra, ≥99.0% (GC)
Sigma-Aldrich
十二烷基硫酸钠, ≥98.0% (GC)
Sigma-Aldrich
十二烷基硫酸钠, 92.5-100.5% based on total alkyl sulfate content basis
Sigma-Aldrich
十二烷基硫酸钠, ≥90% ((Assay))
Sigma-Aldrich
十二烷基硫酸钠, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate
月桂基硫酸钠, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
十二烷基硫酸钠, BioReagent, suitable for electrophoresis, Molecular Biology, ≥98.5% (GC), free-flowing, Redi-Dri
Sigma-Aldrich
十二烷基硫酸钠, Vetec, reagent grade, ≥98%