跳转至内容
Merck
CN
  • NMR cryoporometry characterisation studies of the relation between drug release profile and pore structural evolution of polymeric nanoparticles.

NMR cryoporometry characterisation studies of the relation between drug release profile and pore structural evolution of polymeric nanoparticles.

International journal of pharmaceutics (2014-04-15)
Navin Gopinathan, Bin Yang, John P Lowe, Karen J Edler, Sean P Rigby
摘要

PLGA/PLA polymeric nanoparticles could potentially enhance the effectiveness of convective delivery of drugs, such as carboplatin, to the brain, by enabling a more sustained dosage over a longer time than otherwise possible. However, the link between the controlled release nanoparticle synthesis route, and the subsequent drug release profile obtained, is not well-understood, which hinders design of synthesis routes and availability of suitable nanoparticles. In particular, despite pore structure evolution often forming a key aspect of past theories of the physical mechanism by which a particular drug release profile is obtained, these theories have not been independently tested and validated against pore structural information. Such validation is required for intelligent synthesis design, and NMR cryoporometry can supply the requisite information. Unlike conventional pore characterisation techniques, NMR cryoporometry permits the investigation of porous particles in the wet state. NMR cryoporometry has thus enabled the detailed study of the evolving, nanoscale structure of nanoparticles during drug release, and thus related pore structure to drug release profile in a way not done previously for nanoparticles. Nanoparticles with different types of carboplatin drug release profiles were compared, including burst release, and various forms of delayed release. ESEM and TEM images of these nanoparticles also provided supporting data showing the rapid initial evolution of some nanoparticles. Different stages, within a complex, varying drug release profile, were found to be associated with particular types of changes in the nanostructure which could be distinguished by NMR. For a core-coat nanoparticle formulation, the development of smaller nanopores, following an extended induction period with no structural change, was associated with the onset of substantial drug release. This information could be used to independently validate the rationale for a particular synthesis method. Hence, the specific reasons for the effectiveness of the synthesis route, for obtaining core-coat nanoparticles with delayed release, have been elucidated.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
二氯甲烷, suitable for HPLC, ≥99.8%, contains amylene as stabilizer
Sigma-Aldrich
乙酸乙酯, ACS reagent, ≥99.5%
Sigma-Aldrich
乙酸乙酯, suitable for HPLC, ≥99.7%
Sigma-Aldrich
二氯甲烷, contains 40-150 ppm amylene as stabilizer, ACS reagent, ≥99.5%
Sigma-Aldrich
二氯甲烷, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 50-150 ppm amylene as stabilizer
Sigma-Aldrich
乙酸乙酯, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
二氯甲烷, anhydrous, ≥99.8%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
二氯甲烷, puriss. p.a., ACS reagent, reag. ISO, ≥99.9% (GC)
Sigma-Aldrich
二氯甲烷, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
乙酸乙酯, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
乙酸乙酯, suitable for HPLC, ≥99.8%
Sigma-Aldrich
乙酸乙酯, anhydrous, 99.8%
Sigma-Aldrich
二氯甲烷, puriss., meets analytical specification of Ph. Eur., NF, ≥99% (GC)
Supelco
乙酸乙酯, analytical standard
Supelco
二氯甲烷, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
卡铂
Supelco
二氯甲烷, analytical standard
Supelco
乙酸乙酯, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
二氯甲烷, ACS reagent, ≥99.5%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
乙酸乙酯, ≥99%, FCC, FG
Sigma-Aldrich
乙酸乙酯, ACS reagent, ≥99.5%
Sigma-Aldrich
乙酸乙酯, puriss., meets analytical specification of Ph. Eur., BP, NF, ≥99.5% (GC)
Sigma-Aldrich
二氯甲烷, suitable for HPLC, ≥99.9%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
乙酸乙酯, natural, ≥99%, FCC, FG
Sigma-Aldrich
二氯甲烷, biotech. grade, 99.9%, contains 40-150 ppm amylene as stabilizer
Sigma-Aldrich
乙酸乙酯, biotech. grade, ≥99.8%
Sigma-Aldrich
乙酸乙酯, ReagentPlus®, ≥99.8%
Supelco
二氯甲烷, Selectophore, ≥99.5%