跳转至内容
Merck
CN
  • Characterization of the catabolic pathway for a phenylcoumaran-type lignin-derived biaryl in Sphingobium sp. strain SYK-6.

Characterization of the catabolic pathway for a phenylcoumaran-type lignin-derived biaryl in Sphingobium sp. strain SYK-6.

Biodegradation (2014-06-12)
Kenji Takahashi, Naofumi Kamimura, Shojiro Hishiyama, Hirofumi Hara, Daisuke Kasai, Yoshihiro Katayama, Masao Fukuda, Shinya Kajita, Eiji Masai
摘要

Sphingobium sp. strain SYK-6 is capable of degrading various lignin-derived biaryls. We determined the catabolic pathway of a phenylcoumaran-type compound, dehydrodiconiferyl alcohol (DCA) in SYK-6, and identified some of the DCA catabolism genes. In SYK-6 cells, the alcohol group of DCA was oxidized to the carboxyl group, first at the B-ring side chain and then at the A-ring side chain. The resultant metabolite was degraded to 5-formylferulate and vanillin through the decarboxylation and the Cα-Cβ cleavage of the A-ring side chain. Based on the DCA catabolic pathway, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) genes are thought to be involved in the conversion of DCA into an aldehyde intermediate (DCA-L) and the conversion of DCA-L into a carboxylic acid intermediate (DCA-C), respectively. SLG_05620 and SLG_24930, which belong to quinohemoprotein ADH and aryl ADH, respectively, were isolated as the genes responsible for the oxidation of DCA. In addition to these genes, multiple genes similar to SLG_05620 and SLG_24930 were found to confer DCA oxidation activities on Escherichia coli cells. In order to identify the DCA-L dehydrogenase genes, the DCA-L oxidation activities of the SYK-6 gene products of putative twenty-one ALDH genes were examined. Significant activities were observed in the four ALDH gene products, including the SLG_27910 product, which showed the highest activity. The disruption of SLG_27910 caused a decreased conversion of DCA-L, suggesting that SLG_27910 plays an important role in the DCA-L oxidation. In conclusion, no specific gene seems to be solely responsible for the conversion of DCA and DCA-L, however, the multiple genes encoding quinohemoprotein ADH and aryl ADH genes, and four ALDH genes are probably involved in the conversion processes.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
香草醛, ReagentPlus®, 99%
Supelco
香草醛熔点标准品, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
香草醛, natural, ≥97%, FCC, FG
Sigma-Aldrich
香草醛, ≥97%, FCC, FG
USP
香草醛, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
香草醛, tested according to Ph. Eur.
Supelco
香草醛, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Mettler-Toledo 校准物质 ME 51143093,香草醛, traceable to primary standards (LGC)
Supelco
地高辛, analytical standard
Supelco
香草醛, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
香草醛, European Pharmacopoeia (EP) Reference Standard
地高辛, European Pharmacopoeia (EP) Reference Standard