跳转至内容
Merck
CN
  • Smad3 deficiency protects mice from obesity-induced podocyte injury that precedes insulin resistance.

Smad3 deficiency protects mice from obesity-induced podocyte injury that precedes insulin resistance.

Kidney international (2015-05-07)
Yu B Y Sun, Xinli Qu, Victor Howard, Lie Dai, Xiaoyun Jiang, Yi Ren, Ping Fu, Victor G Puelles, David J Nikolic-Paterson, Georgina Caruana, John F Bertram, Mark W Sleeman, Jinhua Li
摘要

Signaling by TGF-β/Smad3 plays a key role in renal fibrosis. As obesity is one of the major risk factors of chronic and end-stage renal disease, we studied the role of Smad3 signaling in the pathogenesis of obesity-related renal disease. After switching to a high fat diet, the onset of Smad3 C-terminal phosphorylation, increase in albuminuria, and the early stages of peripheral and renal insulin resistance occurred at 1 day, and 4 and 8 weeks, respectively, in C57BL/6 mice. The loss of synaptopodin, a functional marker of podocytes, and phosphorylation of the Smad3 linker region (T179 and S213) appeared after 4 weeks of the high fat diet. This suggests a temporal pattern of Smad3 signaling activation leading to kidney injury and subsequent insulin resistance in the development of obesity-related renal disease. In vivo, Smad3 knockout attenuated the high fat diet-induced proteinuria, renal fibrosis, overall podocyte injury, and mitochondrial dysfunction in podocytes. In vitro palmitate caused a rapid activation of Smad3 in 30 min, loss of synaptopodin in 2 days, and impaired insulin signaling in 3 days in isolated mouse podocytes. Blockade of either Smad3 phosphorylation by SIS3 (a Smad3 inhibitor) or T179 phosphorylation by flavopiridol (a CDK9 inhibitor) prevented the palmitate-induced loss of synaptopodin and mitochondrial function in podocytes. Thus, Smad3 signaling plays essential roles in obesity-related renal disease and may be a novel therapeutic target.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
D -(+)-葡萄糖, ≥99.5% (GC)
Sigma-Aldrich
D -(+)-葡萄糖, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
盐酸 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
葡萄糖, 97.5-102.0% anhydrous basis, meets EP, BP, JP, USP testing specifications
Sigma-Aldrich
D -(+)-葡萄糖, ≥99.5% (GC), BioXtra
Sigma-Aldrich
盐酸, 36.5-38.0%, BioReagent, Molecular Biology
Supelco
盐酸 溶液, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
D -(+)-葡萄糖, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
肌酸酐, anhydrous, ≥98%
Sigma-Aldrich
D -(+)-葡萄糖, ACS reagent
Sigma-Aldrich
盐酸 溶液, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
盐酸 溶液, 32 wt. % in H2O, FCC
Sigma-Aldrich
D -(+)-葡萄糖, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
D -(+)-葡萄糖, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
D-葡萄糖-12C6, 16O6, 99.9 atom % 16O, 99.9 atom % 12C
Sigma-Aldrich
D -(+)-葡萄糖, Vetec, reagent grade, ≥99.5% (HPLC)