跳转至内容
Merck
CN

Design of symmetric TIM barrel proteins from first principles.

BMC biochemistry (2015-08-13)
Deepesh Nagarajan, Geeta Deka, Megha Rao
摘要

Computational protein design is a rapidly maturing field within structural biology, with the goal of designing proteins with custom structures and functions. Such proteins could find widespread medical and industrial applications. Here, we have adapted algorithms from the Rosetta software suite to design much larger proteins, based on ideal geometric and topological criteria. Furthermore, we have developed techniques to incorporate symmetry into designed structures. For our first design attempt, we targeted the (α/β)8 TIM barrel scaffold. We gained novel insights into TIM barrel folding mechanisms from studying natural TIM barrel structures, and from analyzing previous TIM barrel design attempts. Computational protein design and analysis was performed using the Rosetta software suite and custom scripts. Genes encoding all designed proteins were synthesized and cloned on the pET20-b vector. Standard circular dichroism and gel chromatographic experiments were performed to determine protein biophysical characteristics. 1D NMR and 2D HSQC experiments were performed to determine protein structural characteristics. Extensive protein design simulations coupled with ab initio modeling yielded several all-atom models of ideal, 4-fold symmetric TIM barrels. Four such models were experimentally characterized. The best designed structure (Symmetrin-1) contained a polar, histidine-rich pore, forming an extensive hydrogen bonding network. Symmetrin-1 was easily expressed and readily soluble. It showed circular dichroism spectra characteristic of well-folded alpha/beta proteins. Temperature melting experiments revealed cooperative and reversible unfolding, with a Tm of 44 °C and a Gibbs free energy of unfolding (ΔG°) of 8.0 kJ/mol. Urea denaturing experiments confirmed these observations, revealing a Cm of 1.6 M and a ΔG° of 8.3 kJ/mol. Symmetrin-1 adopted a monomeric conformation, with an apparent molecular weight of 32.12 kDa, and displayed well resolved 1D-NMR spectra. However, the HSQC spectrum revealed somewhat molten characteristics. Despite the detection of molten characteristics, the creation of a soluble, cooperatively folding protein represents an advancement over previous attempts at TIM barrel design. Strategies to further improve Symmetrin-1 are elaborated. Our techniques may be used to create other large, internally symmetric proteins.

材料
产品编号
品牌
产品描述

Sigma-Aldrich
氯化钠, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
磷酸二氢钾 一元, powder, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.0%
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
氯化钠, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
IPTG, ≥99% (TLC), ≤0.1% Dioxane
Sigma-Aldrich
氯化钠 溶液, 5 M
SAFC
氯化钠 溶液, 5 M
Sigma-Aldrich
磷酸二氢钾 一元, ReagentPlus®
Sigma-Aldrich
磷酸二氢钾 一元, Molecular Biology, ≥98.0%
Sigma-Aldrich
磷酸钾二元 二元, anhydrous, suitable for luminescence, Molecular Biology, BioUltra, ≥99.0% (T)
Sigma-Aldrich
氯化钠, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
氯化钠, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
氯化钠 溶液, BioUltra, Molecular Biology, ~5 M in H2O
Sigma-Aldrich
氯化钠, 99.999% trace metals basis
Sigma-Aldrich
磷酸钾二元 二元, reagent grade, ≥98.0%
Sigma-Aldrich
异丙基β-D-1-硫代吡喃半乳糖苷, ≥99% (TLC)
Sigma-Aldrich
异丙基 β-D-硫代半乳糖吡喃糖苷 溶液, ReadyMade IPTG solution for Blue-white screening
Sigma-Aldrich
磷酸二氢钾 一元, BioUltra, Molecular Biology, anhydrous, ≥99.5% (T)
Sigma-Aldrich
磷酸钾 二元, meets USP testing specifications
Sigma-Aldrich
磷酸钾 二元 溶液, 1.0 M
Sigma-Aldrich
氯化钠 溶液, 0.85%
Sigma-Aldrich
氯化钠, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
SAFC
异丙基β-D-1-硫代吡喃半乳糖苷
Sigma-Aldrich
磷酸二氢钾 一元, 99.99% trace metals basis
Sigma-Aldrich
磷酸钾二元 二元, 99.95% trace metals basis
Sigma-Aldrich
氯化钠, tablet
Sigma-Aldrich
氯化钠-35Cl, 99 atom % 35Cl
Sigma-Aldrich
氯化钠, random crystals, 99.9% trace metals basis